Getting Started

with Zinc Programming

Zinc® Application Framework™
Version 5

Zinc Software Incorporated
Pleasant Grove, Utah

NOTICE

This documentation is available in electronic and printed formats. If the electronic documentation is
printable, a single copy may be printed for use by the Developer. Except for the foregoing, no part of
this publication may be reproduced, translated, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior written permission of Zinc Software Incorporated (“Zinc”).

DISCLAIMER

While every precaution has been taken in the preparation of this manual, Zinc assumes no responsi-
bility for errors or omissions. This publication and features described herein are subject to change
without notice. ZINC MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT

TO THE CONTENTS HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRAN-

TIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

TRADEMARKS

Zinc is a registered trademark and Zinc Application Framework, Zinc Designer and Zinc DataCon-
nect are trademarks of Zinc Software Incorporated. All other trademarks and tradenames used herein
are owned by their respective holders.

LICENSE AGREEMENTS

Zinc Application Framework is licensed subject to the terms and conditions of one of two separate
license agreements found in the “Getting Started” manual. The Personal Version license is provided
to individuals developing non-commercial, non-distributable, personal-use-only applications. There
is no license fee or royalty required for the Personal Version license. HOWEVER, TO EXERCISE
RIGHTS BEYOND THE PERSONAL VERSION LICENSE, THE DEVELOPER MUST PUR-
CHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

ACKNOWLEGEMENTS

The ChartFolio framework used by ZafChart is licensed software ©1994-97 DPC Technology Corpo-
ration. The XPM library used by Zaflmage on Motif is licensed software ©1989-95 GROUPE BULL.
The ZAF installation program on Windows (INSTALIT) is licensed software ©1986-96 HPI. The
MetaWINDOW graphics primitives used by ZafDisplay on DOS is licensed software ©1988-96
Metagraphics, Inc.

This manual was generated July 7, 1997.

Copyright © 1990-1997 Zinc Software Incorporated.
All Rights Reserved.
Printed in the United States of America on recycled paper.

Contacting Zinc

Worldwide

North America

Europe

Sales: info@zinc.com, sales@zinc.com
Technical Support: support@zinc.com
Training and Consulting: services@zinc.com
Web: http://www.zinc.com/

Ftp: ftp://ftp.zinc.com/

CompuServe: GO ZINC

Zinc Software Incorporated

405 South 100 East

Pleasant Grove, Utah 84062 USA
Tel: 1-801-785-8900

Sales: 1-800-638-8665

Support: 1-801-785-8998

Fax: 1-801-785-8996

Zinc Software Services, Inc.

42627 Garfield, Suite 214

Clinton Township, Michigan 48038 USA
Tel: 1-810-228-4900

Fax: 1-810-228-6633

Zinc Software (UK) Ltd.

106-108 Powis Street

London, SE18 6LU United Kingdom
Tel: +44 (0)181 855-9918

Fax: +44 (0)181 316-2211

BBS: +44 (0)181 317-2310

Email: europe@zinc.com

ZAF License Agreement - Professional Version %

Zinc Application Framework
Software License Agreement

Professional Version

DO NOT INSTALL OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU HAVE READ AND
ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING OR USING THE SOFTWARE YOU ACCEPT THIS
LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE AGREEMENT: (A) YOU MUST NOT INSTALL
OR USE THE SOFTWARE, AND (B) YOU MAY RETURN THE SOFTWARE, INCLUDING ALL PACKAGING,
MEDIA, AND DOCUMENTATION, FOR A REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS
OF THE DATE OF PURCHASE OF THIS LICENSE.

Zinc Application Framework, Version 5 Platform Module may be used by a single user only (i.e., the
Professional Version Software License Agreement Licensed Platform Module is restricted to the user) on a sin-
“ " gle computer running under the operating system designated
1. Developer “Developer” is the person who accepts and gn the Jicense certificate for the Licensed Platform Module.
agrees to this Agreement. If Developer is an employee of ?eveloper may not use a Licensed Platform Module on
company and intends to use the Software within the scope ofgre than one computer at any given time unless an addi-
his/her employment or to develop Applications for the com- tjonq| jicense for each additional computer is purchased. The
pany, then the *Developer” includes the company, andghared Code may be used by a single user only (i.e., the
acceptance of this Agreement is also made on behalf of th&hareq Code is restricted to the same user) on any computer
company. on which at least one of the users's Licensed Platform Mod-

2. Software “Software” shall mean the Zinc Application ule(s) is used as permitted above. Licenses for additional
Framework computer programs provided with this Agree- USers may be purchased from Zinc at their then-current
ment. The Software consists of “Shared Code” and one ofPrices. Rights not expressly granted are reserved by Zinc.
more “Platform Modules.” The license certificate provided g pjstribution Rights The Software includes “Linkable
W'}:.h hth's I/_\greerr&ent desllgnateshthe g’lat_form (Ij\/lo;ju;es Routines,” “Distributable Files,” and non-distributable files.
\I\A/II 'g Iare |censfe todDeve opﬁr. IL_ese eds%rllatfe P é,\i/} %m?_inkable Routines consist of the object code routines in the
IO ules ar_ehre er‘;(_e to ash_t e |che.nse atform ?] - Software libraries (e.g., *.LIB, lib*.a). Distributable Files
ules.” Notwithstanding anything in this Agreement to the cqngist of those “run-time” files identified in the Software

contrary, the Software does not include, and Developer hagjocymentation as required during execution of Developer's
no right to install, use or copy, any Platform Module not des-

: : - > : rogram applications. The License includes the following
ignated in the license certificate. If Developer desires to “s‘}i?istribution fights: (a) authorization for Developer to incor-

additional Platform Modules, a license for such additional n5rate Linkable Routines into Applications developed by
Platform Modules must first be purchased from Zinc or its peyeloper and to distribute them as part of such Applica-
authorized reseller. Additional Platform Modules for which 4ong 1o Developer's customers, provided that the Linkable
a license is purchased shall be governed by this Agreemengqtines have been incorporated in such a way that they
"LS Llce}tnsed P‘!agormdMo%uI;eS and Shﬁ‘” b% deemeﬂ paLt Otannot be used apart from the Applications, (b) authoriza-
t Ie fSO Wared IS are CIO e mekans ? dSO Wﬁre other { f'f‘rlion for Developer to distribute Distributable Files to Devel-
Platform Modules. Developer acknowledges that Zinc Soft- gher's customers as part of the Applications developed by
ware Incorporated (“Zinc”) and its licensor(s) own the copy- peyeloper, and (c) authorization for Developer to license
rights and other intellectual property in and to the Software. Developer's customers to use such Linkable Routines and

3. Documentation “Documentation” means the online doc- Distributable Files as part of the Applications, but not sepa-
umentation and printed documentation, if any, provided torate from such Applications.

Developer in connection with this Agreement. Whenever the; pistribution Guidelines Except for the Linkable Rou-
cogtef):t reasor?a”blyl permltls, an% reference in this Agreementines and Distributable Files, no portion of the Software may
to Software shall also apply to Documentation. be distributed or transferred by Developer. The Linkable
4. Applications “Applications” mean computer program Routines and Distributable Files may not be distributed as
applications other than competitive computer programs.Part of any computer program other than Applications as
“Competitive computer programs” means computer pro- defined in Section 4 without the express written permission

grams that are competitive with, or that can be used in lieudf Zinc. Developer must include an appropriate Zinc copy-
of, the Software. right notice, in accordance with guidelines published by

. i o . Zinc, on all copies of Developer's Applications in which
5. License Subject to the other provisions of this Agree- Linkable Routines are incorporated or with which Distribut-
ment, Zinc grants to Developer a nonexclusive, nontransfer-able Files are distributed. Customers who receive any Link-
able license (the “License”): (a) to use the Software toable Routines or Distributable Files under Section 6 may not
develop Applications (as defined above), and (b) to exerciseuse any of the Linkable Routines or Distributable Files inde-
“distribution rights” under Section 6 below. Each Licensed pendent of Developer's Applications or use any Linkable

Vi Zinc Application Framework 5

Routines or Distributable Files for any development pur- 13.Disclaimers and Limitation s

poses. Developer shall ensure that its Application license, . . .
agreements with customers are consistent with this Agree 13- Disclaimer of Warrantie. ZINC MAKES NO WAR-

ment. RANTY, PROMISE OR REPRESENTATION NOT
EXPRESSLY SET FORTH IN THIS AGREEMENT.

8. Copie:. Developer may make copies of the Software pro- EXCEPT AS EXPRESSLY WARRANTED HEREIN,
vided that any such copy: (a) is created as an essential step THE SOFTWARE IS PROVIDED “AS I1S” WITHOUT
the utilization of the Software on a computer in accordanceWARRANTY OF ANY KIND. ZINC DISCLAIMS AND
with the License and this Agreement, or (b) is only for archi- EXCLUDES ALL IMPLIED WARRANTIES OF NON-
val purposes to back-up the licensed use of the the SoftwardNFRINGEMENT, MERCHANTABILITY AND FIT-
Developer may also make copies of the Software to theNESS FOR A PARTICULAR PURPOSE. ZINC DOES
extent reasonably needed to exercise rights under thiNOT WARRANT THAT THE SOFTWARE WILL
License or this Agreement. All Zinc trademark and copy- SATISFY DEVELOPER'S REQUIREMENTS OR
right notices must be faithfully reproduced and included on THAT IT IS WITHOUT DEFECT OR ERROR OR
copies made by Developer. Developer may not make anyTHAT THE OPERATION THEREOF WILL BE UNIN-
other copies of the Software. The online DocumentationTERRUPTED. THIS AGREEMENT GIVES DEVEL-
may be printed by Developer and used by Developer, bulOPER SPECIFIC LEGAL RIGHTS. DEVELOPER
only in connection with the licensed use of the Software. = MAY HAVE OTHER RIGHTS, WHICH VARY FROM

. STATE/JURISDICTION TO STATE/JURISDICTION.
9. Protection of the Softwar. Except as expressly autho-

rized in this Agreement, Developer may not: (i) disassemble,13.b. Limitation on Liability. THE AGGREGATE LIA-
decompile or otherwise reverse engineer the Software, or (ilBILITY OF ZINC ARISING FROM OR RELATING
create derivative works based upon the Software, or (ii)TO THIS AGREEMENT OR THE SOFTWARE
rent, lease, sublicense, distribute, transfer, copy, reproduceREGARDLESS OF THE FORM OF ACTION OR
or timeshare the Software, or (iv) allow any third party to CLAIM--E.G., CONTRACT, WARRANTY, TORT,
access or use the Software, or (v) modify the SoftwareSTRICT LIABILITY, MALPRACTICE, FRAUD AND/
(including any deletion of code from or addition of code to OR OTHERWISE) SHALL NOT EXCEED THE
the Software). TOTAL PAYMENT MADE BY DEVELOPER TO
s i PURCHASE THIS LICENSE. ZINC SHALL NOT IN
10. Source Cod. “Licensed Source Code” shall mean that ANY CASE BE LIABLE FOR ANY SPECIAL. INCI-
portion of the Software's source code which is provided tODENTAL CONSEQUENTIAL, INDIRECT OR’PUN'-
Developer in connection with this Agreement. The LicensedTNE DAMAGES, OR FOR” LOSS OF PROFIT,

Source Code is part of the Software and is governed by thiRevENUE. DATA. OR PROGRAMS. EVEN IF ZINC
Agreement. The License includes authorization for Devel- a5~ BEEN ADVISED OF THE POSSIBILITY
oper to use the Licensed Source Code to maintain and motrHEREOF. BECAUSE SOME STATES DO NOT
ify the Software to conform with Developer's needs in o| | Oow THE EXCLUSION OR LIMITATION OF

creating Applications. All modified Software shall be gov- | |ABILITY. THE ABOVE LIMITATION MAY NOT
erned by this Agreement as Software. The Licensed Sourciapp y. ’

Code may not be disclosed or distributed by Developer to

any other person. Developer is not entitled to any other Soft-13.c.Responsibility for Decisior. Developer is responsible
ware source code. for decisions made and actions taken based on the Software.
. . . o The Software is designed and intended for use by computer
11. Disclaimel. Because Zinc has no control over modifica- potessionals experienced in the uses and limitations of
tions made by Developer, it is not obligated to maintain or compyter software and it is Developer's responsibility to
support modified versions of the Software and no warrantieS;qcertain the suitability of the Software.

are applicable to such modified versions. There is no war-
ranty that the Software is suitable for modification and all 13.d.Non-Parties. The officers, directors, employees, share-
modifications are undertaken at the risk and discretion ofholders and representatives of Zinc are not parties to this
Developer. Agreement and shall have no obligation or liability to Devel-
12. Limited Warranty. oper relating to this Agreement or the Software.

. . . . 14. Sole Remedy and Allocation of Ri. DEVELOPER’S
12.a.Media and Documentatio. Zinc warrants that if the SOLE AND EXCLUSIVE REMEDY IS SET FORTH IN
media or Documentation provided by Zinc are in a damagecry 5 AGREEMENT. This Agreement defines a mutually
or physically defective condition at the time that the L'Censeaqreed-upon allocation of risk and the License fees reflect
is purchased and if they are returned to Zinc (postage preg,ch allocation of risk
paid) within 90 days of the date this License is purchased, ’
then Zinc will provide Developer with replacements at no 15. Governing Lav. This Agreement shall be governed by
charge. the laws of the State of Utah and the United States of Amer-
ica without giving effect to conflict of laws. Any litigation

12.b. Software. Zinc warrants that if the Software fails 10 ot veen the parties shall be conducted exclusively in Utah.

substantially conform to the specifications in the Software
documentation or to any other Software specifications pub-16. Entire Agreemen. This Agreement sets forth the entire
lished by Zinc and if the nonconformity is reported in writ- understanding and agreement between the parties and may
ing by Developer to Zinc within 90 days from the date the be amended only in a writing signed by both parties. No
License is purchased, then Zinc shall either remedy the nonvendor, distributor, dealer, retailer, sales person or other per-
conformity or offer to refund the purchase price to Devel- son is authorized by Zinc to modify this Agreement or to
oper upon a return of all copies of the Software (including make any warranty, representation or promise which is dif-
all packaging, media, and Documentation) to Zinc. In the ferent than, or in addition to, the warranties, representations
event of a refund the License shall terminate. or promises of this Agreement.

ZAF License Agreement - Professional Version vii

17. Termination. The License shall automatically terminate Computer Software--Restricted Rights at 48 CFR 52.227-
if Developer materially breaches this Agreement. Upon ter-19, as applicable. Contractor/Manufacturer is Zinc Software
mination of the License, Developer shall cease all use of theincorporated, 405 South 100 East, Pleasant Grove, Utah
Software and shall destroy all copies of the Software within 84062.

the possession or control of Developer and shall return the L
original Software media and Documentation to Zinc. 19. Export Laws. Developer shall not export or distribute

any Software in violation of any applicable laws or regula-
18. U.S. Government Restricted Rigl. The Software has tions, including the export laws and regulations of the
been developed entirely at private expense and is provideUnited States.

as “Commercial Computer Software” or “restricted com-
puter software” with RESTRICTED RIGHTS. Use, duplica- 20. Constructior. In the construction and interpretation of
tion, or disclosure by the U.S. Government or U.S. this Agreement, no rule of strict construction shall apply
Government (sub)contractor is subject to restrictions as se29ainst either party.
forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software Clause at DFARS 252.227-

7013 or subparagraphs (c)(1) and (2) of the Commercial

viii Zinc Application Framework 5

Zinc Application Framework
Software License Agreement

Personal Version

DO NOT INSTALL OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU HAVE READ AND
ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING OR USING THE SOFTWARE YOU ACCEPT THIS
LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE AGREEMENT YOU MUST NOT INSTALL OR
USE THE SOFTWARE.

THIS PERSONAL VERSION LICENSE IS OFFERED TO DEVELOPERS WHO DESIRE TO USE THE SOFTWARE FOR
PERSONAL USE ONLY. THE LICENSED DEVELOPER IS NOT REQUIRED TO PAY ANY LICENSE FEE OR ROYAL-
TIES FOR THIS PERSONAL VERSION LICENSE. HOWEVER, TO EXERCISE RIGHTS BEYOND THIS PERSONAL
VERSION LICENSE, THE DEVELOPER MUST PURCHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

Zinc Application Framework, Version 5 object code routines in the Software libraries (e.g., *.LIB,
Personal Version Software License Agreement lib*). Distributable Files consist of those “run-time” files

. . L identified in the Software documentation as required during
1. Developer “Developer” is the individual person who gyacytion of Developer's program applications. The License
accepts and agrees to this Agreement. No corporation, particiydes: (a) authorization for Developer to incorporate
nership, limited liability company or other organization or | jnable Routines into Personal Applications developed by
business entity may be a Developer under this Agreementpeyeloper, provided that the Linkable Routines have been
They may, however, purchase professional version licenseq,corporated in such a way that they cannot be used apart
from Zinc Software Incorporated (“Zinc”). from the Personal Applications, and (b) authorization for

2. Software “Software” shall mean the Zinc Application Developer to include Distributable Files as part of the Per-
Framework computer programs provided with this Agree- Sonal Applications developed by Developer, and (c) authori-
ment. Developer acknowledges that Zinc and its licensor(s)zation for Developer to use such Linkable Routines and

own the copyrights and other intellectual property in and to Distributable Files as part of the Personal Applications, but
the Software. not separate from such Personal Applications. Except as

))) provided in Section 7, Linkable Routines and Distributable
3. Documentation “Documentation” means the online doc- Files shall not be distributed or transfered by Developer, not
umentation and printed documentation, if any, provided toeven as part of or with any Personal Application. To distrib-
Developer in connection with this Agreement. Whenever theute Linkable Routines or Distributable Files as part of or
context reasonably permits, any reference in this Agreemeniyvith an application, Developer must first purchase a profes-
to Software shall also apply to Documention. sional version license from Zinc and agree to Zinc's then-

4. Personal Applications “Personal Applications” mean current professional version license agreement.

computer program applications developed by Developer7. Distribution Rights A copy of the Software in its com-
that: (a) are for use by Developer only, and not for use by, oplete and unmodified form as provided by Zinc may be dis-
distribution to, any employer, customer or other person, _amfributed or transferred by Developer to any other individual
(b) are not competitive computer programs. “Competitive person. Such other person shall have no right to install or use
computer programs” means computer programs that arghe Software unless he/she accepts the same terms and con-
competitive with, or that can be used in lieu of, the Software.ditions as are in this Agreement. Although such other per-

5. License Subject to the other provisions of this Agree- son’s agreement shall be identical to this Agreement, they

ment, Zinc grants to Developer a nonexclusive, nontransfer—shall be separate and independent agreements.

able license (the “License”): (a) to use the Software to8. Copies Developer may make copies of the Software pro-
develop Personal Applications (as defined above), and (b) ta/ided that any such copy: (a) is created as an essential step in
use such Personal Applications. Rights not expresslythe utilization of the Software on a computermitordance
granted are reserved by Zinc. The License does not includevith the License and this Agreement, or (b) is only for archi-
any right to use the Software in connection with the develop-val purposes to back-up the licensed use of the the Software.
ment of any computer program or application other than PerDeveloper may also make copies of the Software to the
sonal Applications. In order to use the Software in extent reasonably needed to exercise rights under the
connection with the development of computer programLicense or this Agreement (e.g., distribution rights under
applications for use by others, Developer must first purchaseSection 7). All Zinc trademark and copyright notices must
a professional version license from Zinc and agree to Zinc'spe faithfully reproduced and included on copies made by
then-current professional version license agreement. Developer. Developer may not make any other copies of the

6. Linkable Routines and Distributable FilesThe Software Software.
includes “Linkable Routines,” “Distributable Files,” and
non-distributable files. Linkable Routines consist of the

ZAF License Agreement - Personal Version ix

9. Protection of the Softwal. Except as expressly autho-

FOR ANY SPECIAL, INCIDENTAL, CONSEQUEN-

rized in this Agreement, Developer may not: (i) disassemble, TIAL, INDIRECT OR PUNITIVE DAMAGES, OR
decompile or otherwise reverse engineer the Software, or (ilFOR LOSS OF PROFIT, REVENUE, DATA, OR PRO-
create derivative works based upon the Software, or (i) GRAMS, EVEN IF ZINC HAS BEEN ADVISED OF
rent, lease, sublicense, distribute, transfer, copy, reproduceTHE POSSIBILITY THEREOF. BECAUSE SOME
or timeshare the Software, or (iv) allow any third party to STATES DO NOT ALLOW THE EXCLUSION OR
access or use the Software, or (v) modify the SoftwareLIMITATION OF LIABILITY, THE ABOVE LIMITA-
(including any deletion of code from or addition of code to TION MAY NOT APPLY.

the Software).

10. Licensed Source Cou. “Licensed Source Code” shall

15. Responsibility for Decisior. Developer is responsible
for decisions made and actions taken based on the Software.

mean that portion of the Software’s source code which isThe Software is designed and intended for use by computer
provided to Developer in connection with this Agreement. professionals experienced in the uses and limitations of
The Licensed Source Code is part of the Software and iscomputer software and it is Developer's responsibility to
governed by this Agreement. The License includes authori-ascertain the suitability of the Software.

zation for Developer to use the Licensed Source Code tc
maintain and modify the Software to conform with Devel-

oper’'s needs in creating Personal Applications. All modified
Software shall be governed by this Agreement as Software

16. Non-Parties. The officers, directors, employees, share-
holders and representatives of Zinc are not parties to this

Agreement and shall have no obligation or liability to Devel-

The Licensed Source Code may not be disclosed or distrip@Per relating to this Agreement or the Software.
uted by Developer to any other person except as part of 47, Allocation of Risk. This Agreement defines a mutually

distribution or transfer of a complete and unmodified copy agreed-upon allocation of risk and the License fees reflect
of the Software as provided by Zinc under Section 7. Devel-g,ch allocation of risk.

oper is not entitled to any other Software source code.

18. Governing Lav. This Agreement shall be governed by

11. Disclaimel. Because Zinc has no control over modifica- the laws of the State of Utah and the United States of Amer-
tions made by Developer, it is not obligated to maintain orjca without giving effect to conflict of laws. Any litigation
support modified versions of the Software and no warrantieshetween the parties shall be conducted exclusively in Utah.
are applicable to such modified versions. There is no war-]))
ranty that the Software is suitable for modification and all 19. Entire Agreemer. This Agreement sets forth the entire
modifications are undertaken at the risk and discretion ofunderstanding and agreement between the parties and may

Developer.

12. Developer Source Co. Developer may distribute,

be amended only in a writing signed by both parties. No
vendor, distributor, dealer, retailer, sales person or other per-
son is authorized by Zinc to modify this Agreement or to

transfer, and disclose Developer’'s source code to Personimake any warranty, representation or promise which is dif-
Applications, provided that no part of the Licensed Sourceferent than, or in addition to, the warranties, representations
Code (or modified versions thereof) is distributed, trans- or promises of this Agreement.

ferred, or disclosed.

13.Disclaimer of Warrantie. ZINC MAKES NO PROM-
ISE OR REPRESENTATION NOT EXPRESSLY SET
FORTH IN THIS AGREEMENT. BECAUSE THERE
IS NO LICENSE FEE OR ROYALTY, ZINC MAKES
NO WARRANTY OF ANY KIND AND THE SOFT-
WARE IS LICENSED AND PROVIDED TO DEVEL-
OPER STRICTLY ON AN “AS IS” BASIS. ZINC
DISCLAIMS AND EXCLUDES ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. ZINC DOES NOT WARRANT THAT THE
SOFTWARE WILL SATISFY DEVELOPER'S
REQUIREMENTS OR THAT IT IS WITHOUT
DEFECT OR ERROR OR THAT THE OPERATION
THEREOF WILL BE UNINTERRUPTED. THIS
AGREEMENT GIVES DEVELOPER SPECIFIC
LEGAL RIGHTS. DEVELOPER MAY HAVE OTHER
RIGHTS, WHICH VARY FROM STATE/JURISDIC-
TION TO STATE/JURISDICTION.

14.Limitation on Liability. THE AGGREGATE LIABIL-
ITY OF ZINC ARISING FROM OR RELATING TO
THIS AGREEMENT OR THE SOFTWARE
(REGARDLESS OF THE FORM OF ACTION OR
CLAIM--E.G., CONTRACT, WARRANTY, TORT,
STRICT LIABILITY, MALPRACTICE, FRAUD AND/
OR OTHERWISE) SHALL NOT EXCEED TEN DOL-
LARS. ZINC SHALL NOT IN ANY CASE BE LIABLE

20. Termination. The License shall automatically terminate
if Developer materially breaches this Agreement. Upon ter-
mination of the License, Developer shall cease all use of the
Software and shall destroy all copies of the Software within
the possession or control of Developer.

21.U.S. Government Restricted Rigl. The Software has
been developed entirely at private expense and is provided
as “Commercial Computer Software” or “restricted com-
puter software” with RESTRICTED RIGHTS. Use, duplica-
tion, or disclosure by the U.S. Government or U.S.
Government (sub)contractor is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software Clause at DFARS 252.227-
7013 or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-
19, as applicable. Contractor/Manufacturer is Zinc Software
Incorporated, 405 South 100 East, Pleasant Grove, Utah
84062.

22. Export Laws. Developer shall not export or distribute
any Software in violation of any applicable laws or regula-
tions, including the export laws and regulations of the
United States.

23. Constructior. In the construction and interpretation of
this Agreement, no rule of strict construction shall apply
against either party.

Zinc Application Framework 5

Table of Contents

Xi

Table of Contents

Contacting Zin . . .
Software License AgreemeProfessmnal VerS|o .
Software License AgreemePersonal Versio.

Quick Start

Getting Starte:
Hello World 1.
Hello World 2.

Architecture Basics.

Index.

Architecture Basics—Event Flo
Event Window .
Suggested Stut .

. Viii

.13

. 15.
17
.21 .

. 27
. .29
.34,
. 43,

45,

Xii Zinc Application Framework 5

Quick Start

Getting Started 15

Getting Started

What Is Zinc
Application
Framework?

How Does it
Work?

Congratulations on your selection of Z¥ Application Framewor. (ZAF),
the most powerful cross-platform internationalized application framework
available.

ZAF is a collection of C++ class libraries with source code, a visual interface
design tool called Zinc Designer™, example programs and more. ZAF is the
easiest and most elegant C++ user interface API ever developed.

Zinc Application Framework allows a single code base to support multiple
platforms, including:

¢ Microsoft Windows
¢ X/Motif

e MS-DOS

* Apple Macintosh

e IBMOS/2

Many derivative operating systems are indirectly supported as well. For exam-
ple, Zinc's MS-DOS support ports easily to embedded and real-time operating
systems such as P-SOS while ZAF's X/Motif support ports easily to virtually
any Unix or real-time OS supporting X/Motif 1.2 or later. Consult current

ZAF 5 readme files for detailed information on tested and certified operating
systems.

Zinc Software is well-known for sophisticated internationalization (i18n) tech-
nology. Using this technology, ZAF supports virtually any single-, double-, or
mixed-byte language worldwide (subject to operating system limitations).
Zinc supports 1SO-8859-1 and Unicode character encoding standards to pro-
vide portable i18n. In addition, ZAF 5 supports any locale (date, time and
number formatting).

Using Zinc's i18n features, a single code base may support a completely inter-
national application. For example, a single ZAF executable might simulta-
neously support English, European languages, Japanese and Chinese.

Zinc Application Framework defines an abstract user-interface API that is
independent of any operating system. This API is then mapped onto native
functionality of each operating system to provide a portable access method on
each environment. This technique, known as “layering,” allows ZAF to be
small, fast, and true to the visual and interactive nuances of each operating sys-

16 Zinc Application Framework 5

How Do | Use
ZAF?

tem. Applications developed with ZAF are native, and therefore look and feel
like other applications developed using native tools on each OS.

When ZAF defines functionality that is not native to an operating system, ZAF
provides the functionality directly. In this way a “superset” of native function-
ality is assured without the overhead of thick “emulation” APIs.

Zinc Application Framework is written entirely in C++. As such, it requires
that programmers be familiar with basic C++ concepts such as inheritance and
derivation. While many C type hooks are supplied in ZAF, a knowledge of
C++ is essential.

ZAF is an advanced programming tool. It provides a high level of flexibility,
extensibility, and scalability to expert users. At the same time, however, ZAF
is designed to be easy to use.

Zinc Designer, an interactive visual design tool, is the starting point for most
ZAF applications. Using Zinc Designer, a developer lays out the windows,
dialogs, and user interface objects that make up an application.

Each object may be customized using “property sheet” editors. ZAF objects
contain rich functionality including context-sensitive help, tool tips (pop-up
help), color and font selection, bitmap support and more. All this functionality
may be accessed and specified without code.

Once an application has been “defined” using Zinc Designer, source code may
be generated. This source code can be immediately compiled to test the basic
functionality of an application. More sophisticated functionality, including
application flow control, may be added at the source code level.

The next section of Getting Started will walk you through simple application
scenarios to demonstrate the simplicity and power of Zinc Application Frame-
work. For more complex, real-world applications, study the example programs
supplied with ZAF 5.

Hello World 1 17

Hello World 1

Building a
Simple
Application

The best way to learn ZAF is to use it. Let's begin by building the simple
“Hello World” program found in the “example/hello” directory. This program
creates a simple window using straight code (without the use of the visual
design tool, Zinc Designer). An example using Zinc Designer will follow.

In this chapter we'll be referring to Microsoft Windows. Detailed information
on building ZAF programs for each environment is included in the Installation
Guide and should be consulted before continuing.

To build the Hello1 application for 32-bit Microsoft Windows, change to the
directory containing the source code and type:

zmake win32

This command invokes “ZMake,” a Zinc-supplied make utility and uses a cus-
tom make file “zmake.mak.” Any make utility and compiler may be used with
ZAF, but ZMake is recommended since it is completely compiler and linker
independent. If you are using Motif or another platform your make utility may
be different.

Now, run the Hello1 application.

The Hellol application utilizes the basic elements of a ZAF application.

Hellol presents a simple window with appropriate decorations such as a title
bar and a border, and a prompt that says “Hello World!” (Note: since this sim-
ple example has no nice exit functionality, you'll need to use the system button
or ALT-F4 to close it.)

Here is the source to the example. A detailed description of the code will fol-
low:

/I COPYRIGHT © 1997. All Rights Reserved. - HELLO1.CPP
/I Zinc Software Incorporated. Pleasant Grove, Utah USA
/I May be freely copied, used and distributed.

#include <zaf.hpp>

int ZafApplication::Main(void)

{
/I Needed for linkers that don't automatically look for
/I unresolved references to main() or WinMain() inside
/I of libraries.
/I (Either main() or WinMain() is found in a ZAF library.)
LinkMain();

18 Zinc Application Framework 5

/I Create a window with generic objects (border, maximize

/I button, minimize button, system button, and title).

ZafWindow *hellowindow = new Zafwindow(0, 0, 30, 3);

hellowindow->AddGenericObjects(new ZafStringData("Hello
Window"));

/I Attach a prompt with the "hello world" text.

/I (The optional ZAF_ITEXT macro guarantees

/I Unicode compatibility.)

hellowindow->Add(new ZafPrompt(2, 1, 0, ZAF_ITEXT("Hello
World!)));

/I Center the window on the main monitor.
zafWindowManager->Center(helloWindow);

/I Attach the window to the window manager
/I (make it appear on the screen).
zafWindowManager->Add(hellowindow);

/I Process events.

/I (This function passes events from the event manager to the
/I window manager until an S_EXIT is received or no more

/I windows are attached to the window manager.)

Control();

/I Return an exit code to the OS.
return (0);

Let's walk through the ten lines of functional code in detail:

#include <zaf.hpp>

The first “real” line of code includes the header file zaf.hpp. This file in turn
includes all the header files that define the classes you'll need to use ZAF. All
ZAF applications should begin with this #include.

int ZafApplication::Main(void)

This example program contains a single method used by all ZAF applications:
ZafApplication::Main(). Since every C++ application requires a main() func-
tion (or WinMain() in Microsoft Windows), the ZAF libraries automatically
include a main() or WinMain() function for you. In your own code, you'll cre-
ate ZafApplication::Main() (or let Zinc Designer generate it for you) and let
ZAF handle the platform specific main() or WinMain().

Hello World 1 19

The ZafApplication class handles many initialization tasks automatically. For
example, the following components are initialized prior to ZafApplica-
tion::Main() being called:

» ZafErrorSystem (an error handler) is instantiated
* ZafHelpTips (a “pop-up” help device) is instantiated
» Zafl18nData (the core internationalization class) is instantiated and initialized

LinkMain();

Our ZafApplication::Main() first calls LinkMain(). LinkMain() is a stub
method defined in the ZAF libraries along with main() or WinMain(). It is
called to assist linkers that don't look for main() or WinMain() in libraries.
Some linkers don't require calling LinkMain(), and others will report link
errors without it.

ZafWindow *hellowindow = new ZafwWindow(0, 0, 30, 3);

Next we create a new instance of the ZafWindow class. The new window's top
left corner is placed at the screen position (0, 0), which is at the top left corner
of the screen. The window's width is 30 cells, and its height is 3 cells. A “cell”
is basically the average width of a dialog font character, and the height of a
string field. (Note: some Motif window managers may override exact window
positioning based on user preferences.)

hellowindow-> AddGenericObjects(new ZafStringData("Hello
Window"));

We want all the normal decorations on the window such as title bar and border,
so we call the AddGenericObjects() method. The title “Hello Window” will be
used in the window's title bar.

helloWindow-> Add(new ZafPrompt(2, 1, O, ZAF_ITEXT("Hello
World!")));

The client area of the window will contain a single prompt object, so we create
a new ZafPrompt instance. The prompt will be placed within the client region
of the window 2 cells from the left and 1 cell from the top. Passing in a zero
for the width causes the prompt to calculate its own width. The prompt will
display the text “Hello World!” (Note that the text is passed to the optional
“ZAF_ITEXT()” macro to allow automatic conversion of 8-bit characters to
16-bit Unicode characters if the application is built in Unicode mode.)

zafWindowManager-> Center(helloWindow);

20

Zinc Application Framework 5

We've decided that the window belongs in the center of the screen, so we call
the window manager's Center() method to automatically center it for us. To
prevent visible movement on the screen we perform the centering prior to dis-
playing the window.

zafWindowManager->Add(helloWindow);

Next, we add the window to the window manager, which has the effect of dis-
playing it.

Control();

Like most modern user interfaces, Zinc Application Framework is event-
driven. To start the ZAF event system and allow the user to interact with our
application, we must now call the Control() method. Control() gets events and
causes them to flow through the ZAF system where they will ultimately arrive
at the correct object for processing.

Examples of events include a mouse click or a keystroke. These events are
passed to the object under the mouse pointer (click), or the object with focus
(keystroke) for processing. Control() continues processing events until it
receives an S_EXIT event, or until there are no windows on the window man-
ager to which it can pass events.

return (0);

Finally, our code returns a zero meaning that the application had no errors.
(Usually, a C++ application returns -1 if an error occurred.)

Clearly, this is a very simple example, meant to get you started programming
with ZAF quickly. You will also want to try using the Zinc Designer for rapid
visual development of user interface elements. The next chapter shows this
method.

Hello World 2 21

Hello World 2

In the previous chapter, we built a simple application strictly with source code.
This technique works well for small applications or for maximum customiza-
tion and control. For most applications there is a better way.

ZAF includes Zinc Designer, an interactive visual design tool, to greatly sim-
plify the task of building a user interface. To build the same application we
built in the previous chapter requires no hand-written source code, for exam-
ple. Hello2, found in the “example/hello” directory, demonstrates this alterna-
tive method in which Zinc Designer is used to generate a persistent object data
file, “hello2.znc,” and to generate the source code necessary to access the
object data file at run time.

Using Zinc Since this is our first experience using Zinc Designer, we'll take things slowly
Designer and explain everything in detail. Later tutorials will assume much of the
knowledge gained in this chapter.

Start Zinc Designer 1. To recreate this application from scratch, open the Zinc Designer while in
and create anewfile a temporary directory—"work” for example. We don't want to overwrite
the Hello2 application shipped with ZAF.

2. Inthe “File” menu, select “New.” Use “hello2.znc” for the file name.
+ Zinc Designer - <no file O] x|
File Edit Options ‘window Help
E S ey “ircdome | Inputl I:Dntmll Selectionl Additional |
foo p— | p—— p—p— | p— | p— | p— I
c}‘: Bl New
File name: Folders:
|hellu2.zm::| | c:\vzafihin
. Cancel |
il Bn__znc - e -
zdeszign.znc £5 zal Network... |
3 bin
List files of type: Drives:
I‘_znc j I =) c: oxygen j

When you exit Zinc Designer (later), this file name will be stored on the main
window’s “File” menu for easy access in the future. The “File” menu will list
the five most recently used files.

22 Zinc Application Framework 5

Examining the file
browser and property
sheet

Create awindow

Now that we have a data file to edi’
the data file browser and property
sheet windows are open. These tw
windows are most important when
using Zinc Designer, but both are
empty for now.

i ZAF DataFile Browser E =]

The “Browser” window will display
a hierarchy of objects contained in
the data file we're using. These
objects may be edited by double- | EREEEEEIE o [=] B
clicking on them in the browser. Mo object |

(Note: In some cases this is the on

way to edit an object, so keep it in

mind.)

The bottom “Property Sheet” win-
dow will display all of the properties
supported by the current “edit
object.” These properties are orga
nized both by function and object.
As you change object properties sl o el
you’ll make your changes on this
window and click “Apply” to save
the change. If you are not happy with a change, a one-level undo capability
will let you recover from your last “Apply” operation.

3. Now create a window by selecting the ZafWindow button in the main
Designer window. The ZafWindow button is the left-most button on the
“Window” page of the toolbar notebook. A new window will now appear.
The window may be resized and moved as desired.

+ Zinc Designer - C:\ZAFABINAHELLD 2. ZHNC O] x|
File Edit Options ‘window Help
e) windo | Inputl Eontroll Seleclionl Additional I

=

H=
Y pE JJODE

! Edit Window H=] 3

Hello World 2 23

Modify window
properties

Note that the window is placed on the screen immediately after clicking the
“Window” button. The first five buttons on the “Window” toolbar page are
offset from the others because they share this behavior. All other controls in
Zinc Designer must be selected and thiartedin a specific position on a par-

ent control.

4. Change the title bar
text on the window by
selecting the “Win-
dow” page of the prop-
erty sheet. Click the
“Window Title” prop-
erty and replace the
default title bar text
with “Hello Win-
dow.” Click the
“Apply” button to
cause the change to
immediately take
effect on the window.

All changes except palette

"wfindow | General | Presentation | Advanced | Region |
Window Tille | el windiowd ﬂ
Destravable True
Has border True
Haz maximize buttan True
Has minimize: button True
Haz aystem menu True

=
Apply [IEdE |
This sets the Window Title attribube. 4

changes (colors and fonts) take effect immediately so you can evaluate the
change. If you don't like the change, click the “Undo” button to undo the

change.

5. Since we intend to
directly access this
window at run time (by
loading it by name
from the data file), we
must know its unique
identifier, or
StringID. To check or
change the StringID,
select the “StringID”
property in the “Gen-
eral” page of the prop-
erty sheet. To make
the StringlD easy to
remember later,

! HelloWindow - <Zafwindow>» H=] 3
Window — General | Presentation I Advanced I Fegion I
StrirglD | Hellchindow ﬂ
Help contest <noner
Help object Hip <Nohes
Quick tip <nones:
User function SHIEHEY
|Jzer object <noner
5
Apply dndo |
This zetg the StringlD attribute. 4

change it to “HelloWindow” (no spaces) and select the “Apply” button
again. (Note: we could have changed both the title and the StringID, then
selected the “Apply” button just once.)

24 Zinc Application Framework 5

Add a prompt object

Modify object properties

Test the user interface
using “Test Mode”

6. Now add a prompt to the window by selecting the ZafPrompt by
ton in the main Designer window. The ZafPrompt button is the
left-most button on the “Additional” page of the notebook.

After selecting the ZafPrompt | permmerwrmm = B
button, click the mouse in the

“Hello Window” where the

new prompt is to appear.

This process is called “plac- ;[DFn;t """""" 1
ing” the object. Afterplacing | = "" Tt Ttttttoct
the control the mouse returns
to normal operation and may
be used to select other con-

trols on our edit window. The prompt may now be moved around on the
window and sized as desired. (Tip: to rapidly place several objects of the

same type you may click the right mouse button to reset the “place”
object.)

7. Now, using the prop- ! ZafPrompt530121 444680 - <ZafPrompt> [l B4

erty sheet, change the
text of the prompt by

Prompt General | Preszentation I Advanced I Fegion I

selecting the “Text” Stringl O ZaiPromptiam 21444680 H
property on the “Gen- Text Hello w/orld]
eral” property sheet Help context CRGHER
Ay
our first application. el snone
Select the uApplyu User function CHENES
button on the property =
sheet and watch the Apply iiras|
Change take effect. Thiz sets the Text attribute.

You may wish to experi-

ment with some of the

other properties as well. Try the “Quick tip” property, for example.

8. Now, let's test the “com- ! Hello Window M= B3

pleted” application. Select

“Test Open Windows” from

the “Options” menu. All the

Zinc Designer windows dis- Helo t/orld
appear and only our edit win-
dow is left. In this mode Zinc
Designer allows the ZAF
libraries to take over—the
controls now appear and behave exactly as they will in the completed,

Hello World 2

25

Generate source code

Resolve code
generation “macros”

compiled application. When finished testing, select the “End Test Mode”
button in the lower right of the display, or close your application window.

9. Next, select “Code Generation” from the “Options” menu. During this
process three source files will be generated by Zinc Designer in addition to
the main object data file “hello2.znc.” The main code generation window
(initially showing the main “CPP” template) is displayed.

i Source Code
cPF | Hee | e |

+ Template

{~ Generated

S [=] E3

$repeat IMCLUDES

#tinclude "$({(IMCLUDES})"
$endrepeat

#tinclude "$({BASEMAME}.inc"

|

int ZafApplication::Main{void)

/4 Ensure main{) is linked properly.

// Hain program file generated by Z2inc Designer.

wl

i Generate code |

Cancel |

Notice that the notebook has three tabs. Each tab corresponds to a file that will
be generated by the designer. Each file has a generation “template” that
includes macros that will be used to complete the code. The macros are

defined from the property sheet currently displayed.

! SourceCode - <ApplicationData> =] E3

10. Select the “WINDOWS”
property. This property spec-
ifies the windows that will be
loaded and presented on
screen when the application
starts. Enter “HelloWindow”
(no spaces), the StringID we
assigned earlier, and select
the “Apply” button. Note that
other properties were auto-
matically defaulted properly
by Zinc Designer and that the
code window now displays
generated code instead of the
template. You may browse

Application |

DATAFILES HELLOZZMC B

DIRECTORY C:HZaFABIN

HELPORBIECT Lnoner

INCLUDES <nones

PERSIST_MAME JzerPersist

WINDOWS Hellowindow j
Apply 1 i |

Thiz sets the WINDOWS attribute.

i

the generated source code and templates using the main window. As you

26 Zinc Application Framework 5

Source Code

Building the application

become more familiar with ZAF you may take this opportunity to verify
the accuracy and completeness of the code generation (which may be
incomplete if the “Application” property sheet is incorrect.)

11. Now select the “Generate code” button on the code generation dialog.
Zinc Designer will write the three source files to disk and a message win-
dow will appear reporting that the code generation was successful.

12. Finally, select the “Save” item in the “File” menu of the main Designer
window and exit the Designer.

If you look in the current directory you'll find that the Designer has created
five files—the three source files generated, plus two others. The “zdesign.cfg”
file is used by the Designer to store configuration information for itself (nota-
bly the “most recently used” files list), so we can ignore it. Let's briefly review
the others:

“hello2.znc” is the data file that stores the window and other objects we created
in the Designer. Zinc Designer may be used to modify this data file without
generating new source code. In this way many changes may be made to an
application without the need to recompile!

The “hello2.cpp,” “hello2.hpp,” and “hello2.inc” files contain the source code
the Designer generated for the application.

“hello2.cpp” must be compiled and linked with the appropriate ZAF libraries
to build the final application. To do this we first need a makefile. You may
simply copy the example/hello/[makefile] we used in the previous chapter to
build our new Hello2 application. Make sure that the “hello2.znc” data file is
in the same directory as the application before running it, since that is where
our window is stored. If you copy the make file, the make command for 32-bit
Microsoft Windows will be:

zmake win32

That's it! Run the application you've just built and check it out. You'll find
that it runs exactly as it did in the test mode of Zinc Designer. With practice
you'll soon be able to create simple applications in just a few minutes.

As you can see after using two techniques for creating applications with Zinc
Application Framework, both have advantages. Zinc Designer provides the
advantages of application prototyping, rapid interface development, and code
generation while “hand coding” provides maximum customization and control.
Most developers will combine these techniques when creating real-world
applications.

In the next section of “Getting Started” we'll discuss Zinc’s basic architectures
and try some more complex tutorials to get you up and running quickly.

Architecture Basics

Architecture Basics - Event Flow

29

Architecture Basics—Event

Flow

OS Queue

Input Devices
(ZafDevice)

Application

U

L

Y

Event Manager
(ZafEventManager)

L

@

=

OS Events

OS Event
Dispatch

ZAF 5 General
Model

&

Control Loop
(ZafApplication::Control)

[

Window Manager
(ZafWindowManager)

1l

Window
(ZafWindow)

1L

Window Object

(ZafWindowObject)

Derived Class(es)

ZafWindowObject

OS Object

Zinc Application Framework is an event-driven system. The general architec-
ture diagram above, 0ZAF General Model,” illustrates ZAF’s fundamental
event-driven architecture. Using this architecture, ZAF obtains events from
the operating system if the OS is itself event-driven, directly from input
devices, and from application code. These events are then passed through a
ZAF application using a well-defined protocol. If you are already familiar

with an event-driven operating system such as Microsoft Windows, Motif,
Macintosh, or OS/2, you will find ZAF to be quickly understandable, and both
easier to use and more powerful than your native API.

30 Zinc Application Framework 5

Event Manager

ZafApplication
::Control

An understanding of this architecture is fundamental to programming with
Zinc Application Framework, so let's look at the architecture in more detail.

ZAF's event-driven system begins
with the event manager (the Zaf- os queus | [ImputDevices || aooication
EventManager class) and its sup- (ZaMevice)

porting input devices. {} {} {}

. i Event Manager
FOI’ Opel’atlng enV'rOnmentS that (ZafEventManager)

don't provide an event-driven sys-

tem (e.g. MS-DOS), the event A {}
manager polls all the attached

devices such as the mouse and key-

board, and assembles events for any input information received.

In the more common case, an event-driven operating system provides native
events that are intercepted by the ZAF event manager.

As events are received, each is encapsulated in an event structure recognized
by ZAF and is placed on ZAF'’s internal event queue for later processing.

ZAF's event manager also handles events that are generated by the ZAF librar-
ies themselves or created and posted to the queue by the programmer, as repre-
sented by the “Application” box in the preceding diagram. ZAF programmers
may also provide custom input devices (derived from the ZafDevice class) to
communicate with non-standard input devices. See the Programmer's Refer-
ence manual for more information about ZafEventManager and event types.

Once the event manager has acquired events the main ZAF control process

regains control of the application. This process is repeated continually while
your application is running.

k4 k4 k4

Event Manager
(ZafEventManager)

‘ Control Loop
(ZafApplication::Control)
Window Manager
(ZafWindowManager)

Architecture Basics - Event Flow 31

Event Routing

This section of the model shows that while the event manager manages event
acquisition into the event queue, ZafApplication::Control() retrieves individual
events from the event manager (via the ZafEventManager::Get() method) and
passes them to the window manager (via the ZafWindowManager::Event()
method). On event-driven operating systems the Control() loop will “sleep”
when no events are available at the operating system, thus allowing other pro-
cesses to fully utilize system resources.

After an event is passed to the window manager (the ZafWindowManager
class), the window manager determines the event's ultimate destination and
proper routing, and dispatches it appropriately.

==

0S Events Window Manager
(ZafWindowManager)

1l

OS Event Window
Dispatch (ZafWindow)

k Window Object
(ZafWindowObject)

There are two basic types of events processed by ZAF and two different meth-
ods of routing these events. The two event types are, roughly, “operating sys-
tem events” and “ZAF events.”

OS Events

Operating system events are generated by an OS and are generally not useful to
the programmer without translating them to a portable equivalent. Examples

of OS events are mouse movement, redisplay (expose) messages, sizing notifi-
cations, etc.

ZAF Events

ZAF events are usually generated by the ZAF libraries or by the programmer.
Keyboard events are also considered “ZAF events.” These events are gener-
ally useful to the programmer in their current state.

Direct Event Routing

In order to provide most efficient event routing, the window manager often
allows the native operating system to dispatch native events directly to the
appropriate object. This type of event dispatch, indicated by “OS Event Dis-

32 Zinc Application Framework 5

Event
Handling

patch” on the diagram, is called “Direct Event Routing” and is used for all OS
events. These events are only rarely useful to the application programmer.

Top-Down Event Routing

Other events are handled by the window manager and dispatched to the appro-
priate window—usually the window with focus. The window in turn either
handles the event if appropriate, or passes the event to the appropriate child for
processing—usually the child with focus. ZAF events are commonly accessed
by the programmer for application control and response. Top-Down routing
allows them to be handled hierarchically—at any level of the user interface.

Exceptions to these event routing rules are made only when requested by the
application programmer.

Ultimately each event is received by a window
object's Event() method where it is processed. b

This section of the General Model shows that atimioaoe
whether the OS or ZAF dispatches the event, &

window object eventually receives it—usually

the window object with focus.

The window object handles the event using a
hierarchy of Event() methods. The first Event()

method called belongs to the most-derived class

indicated by “Derived Class(es)” on the diagram. This class may be a ZAF
library object, or a programmer derivation.

Derived Class(es)

If the derived class does not handle the event, it is passed to its base class’
Event() method for handling. This process may continue until the ultimate
base class, ZafWindowObiject, receives the event and either processes it or
hands it off to the native operating system object for handling. (Remember
that ZAF utilizes a “layered” user interface implementation where most ZAF
objects have corresponding operating system objects “underneath” them that
can handle many operations natively.)

Derivation

ZAF offers two primary methods for customizing event response. The first
method (described in the preceding section) is to derive from a ZAF class and
overload its Event() method. There the programmer may process any desired
events and pass the rest to a base class where the library’s default handling can
take over. The programmer may also directly call another object’'s Event()
method if appropriate.

Callbacks

The second custom handling method relies on a less object oriented
technique—the callback function. A ZAF user function is a C type callback

Architecture Basics - Event Flow 33

Event Mapping

function that automatically receives a small subset of events if assigned to a
ZAF user interface object. This event handling method is suitable for trivial
operations and does not require derivation.

Using either event handling method, Zinc's architecture affords both flexibility
and extensibility.

The ZAF General Model processes both native and portable events. To
achieve portability, the programmer must therefore translate or “map” native
events to portable equivalents prior to interpreting them in an application.
ZAF provides the LogicalEvent() method for this purpose.

ZAF provides operating system independence by defining a large set of porta-
ble events. LogicalEvent() returng@antext sensitivenapping of native OS

events to portable ZAF events. To accomplish this task, each ZAF class con-
tains a unique table of event mappings that allows objects to translate native
events in a specific way for each class. LogicalEvent() also converts event
data using similar context sensitivity. For example, mouse events contain
pointer coordinates that are converted relative to the top-left corner of the
object, and keyboard events contain character data that must be converted rela-
tive to the current international character mode (ISO or Unicode).

Event mapping may seem complicated at first glance, but is actually trivial for
the application programmer. A simple call to LogicalEvent() prior to process-
ing each event will yield a standardized result across all platforms. (The ZAF
libraries do not automatically call LogicalEvent() since they are optimized for
maximum performance in each operating system environment and are capable
of interpreting native OS events directly.)

The next chapteEvent Window builds on the concepts discussed in this
chapter. It derives a basic “event window” to handle custom user events.
Study “Event Window” and other event examples in the ZAF 5 distribution to
fully understand ZAF event handling.

34 Zinc Application Framework 5

Event Window

Part One—
Using Zinc
Designer

Start Zinc Designer
and create a window

Customize the window

To experience the ZAF Event Flow Architecture in use, let's create a simple
application and watch how it works. “Event Window” will be a simple pro-
gram that demonstrates the trapping of events. It will have a single window
with a pull-down menu that sends user-defined events to the window. These
user-defined events will then be trapped to change the background color of the
window.

This tutorial builds on the experience gained in the “Hello World 1" and
“Hello World 2" tutorials. “Event Window” starts simple with plenty of detail
and becomes more advanced as it progresses.

A completed version of the application can be found in “example/event,” but
we'll create it from scratch in a temporary directory to gain a better under-
standing of the concepts involved. Before continuing, you may wish to com-
pile and run Zinc's version to get a feel for the end product.

1. To start, first create a new directory—"“work” for example. We don’t want
to overwrite the example program shipped with ZAF 5. Eventually this
directory will contain source code, header files, a designer data file, a
make file and an executable.

2. Next, launch Zinc Designer from your temporary directory. We'll be cre-
ating a new data file with a simple derived window and a pull-down menu.

3. Create a new data file called .
“eventl.znc.” Select “File, New” iR {lIL] ISi=] E3
from the menu.

4. Create a new ZafWindow and mov
and size it as desired. (Click on tt
first button in the “Window” page
of the toolbar notebook.)

5. Change the window’s title to “Event Window.” (Use the “Title” property
on the “Window” page of the property sheet and select “Apply.” Refer to
the “Hello World 1” example chapter for a description of property sheet
usage.)

6. Change the window’'StringID to “EventWindow” (no spaces). We'll use
this StringID to refer to the window later. (StringID is on the “General”
property sheet page.)

7. Since we'll be deriving a window to handle custom events, we need to
specify the derived class name. Later, Zinc Designer will generate code

Event Window 35

Add a pull-down menu
and pull-down items

Add pull-down items

8.

10.

11.

that loads our derived window using this class name and its StringID.
(Class Name is on the “Advanced” property sheet page.)

Now, place a new ZafPullDownMenu on the window. (The third button
on the toolbar’s “Control” notebook tab.)

Once the pull-down menu is in place, we must invoke the menu editor to
modify it and add our custom menu structure. To do this, select the data
file browser window and locate the pull-down menu. (You'll find the
pull-down menu in the following location: ZafWindow, EventWindow,
ZAF_NUMID_PULL_DOWN_MENU). Now, double-click the menu

item to invoke the menu editor.

i+ ZafPullDownM enu =] E3

B 5 Z4F_NUMID_PULL_DDWHN_MENU
= File

= g

Add

Delete

Move Up

1

Move Down

ak. Cancel

Select the “Add” button to add a second ZafPullDownltem to the pull-
down menu (the first was automatically added to the menu when it was
created). Then, select the first pull-down item in the “ZafPullDownMenu”
edit window and using the property sheet change its text to “File.” Select
the property sheet “Apply” button to save the change.

Next, select the second pull-down item in the “ZafPullDownMenu” edit
window and with the property sheet change its text to “Color.”

36 Zinc Application Framework 5
Add pop-up menu 12. Now select the “File” menu option in the menu editor and click “Add”
items to hook our again. Notice that a new sub-item was added to the File menu. Edit this
custom funcionalty new item’s text (using the property sheet) and change it to “Exit.”
13. Using the same technique we used to add the “Exit” item, add three sub-
items to the “Color” menu. We want these to read “Red”, “Green”, and
“Blue.” When you finish, the menu editor should look similar to the fol-
lowing picture.
[Zapubowitens———— — EEIE
1 5 Z&F_NUMID_PULL_DOWMN_MENL i’
L% Exit
= = Color ﬂl
&l Fed
% Green Move U
_ P
% am —'l
Move Down
=
ok Cancel |
Add functionality to the 14. Obviously, the “File, Exit” menu item will be used to exit the application.
pop-up items ZAF includes built-in functionality for adding an “exit” trigger to a menu

15.

item. To set the exit behavior, change its pop-up item type to “Exit.”
Select the property sheet “Apply” button to set the change.

Unlike the “Exit” item, the “Red,” “Green,” and “Blue” menu items can’t
take advantage of automatic pop-up types to invoke their actions since
they invoke unique application functionality. Instead, we’ll cause these
items to send programmer-defined events that our code can trap to change
the window color. To do this, set the “Send message” property for each of
the pop-up items. “Send message” causes the item to put an event on the
ZAF event queue whenever this menu item is selected.

Event Window 37

Generate source code

16.

17.

18.

Since ZAF reserves event values above 10,000 for programmer use, we'll
start with that value. Set “10000” for the “Red” item’s “Send message”
property, “10001” for the “Green” item, and “10002” for the “Blue” item.

Be sure to click “Apply” after each change! Later we’ll define these event
constants in our header file.

Select the “OK” button in the “ZafPullDownMenu” edit window to dis-
miss the menu editor and finalize the menu changes.

With our user interface defined we are ready to generate source code and
continue developing our application outside Zinc Designer. To generate
code select “Code Generation” from the designer’s “Options” menu.

You'll see the source code window containing the template used to gener-
ate code, and a custom property sheet page used to define the macro sym-
bols used by the code generator.

Activate the property sheet. In the property sheet, change “INCLUDES”
to “eventwnl.hpp”. This is the name of the header file we’ll create once
we're finished in Zinc Designer. Change the “WINDOWS” property to
“EventWindow”"—the StringID of the derived window we just created.
Finally, select “Apply” to save the macros and apply them to the source
code template. You'll see generated source code appear in the source
code window:

! Source Code H=] 3
cPp | Hee | inc |

" Template {* Generatec
// Hain program file generated by Zinc Designer. fj

#tinclude "eventwni_hpp"
#tinclude "event1.inc"

int ZafApplication::Hain{void)

/4 Ensure main({) is linked properly.
LinkHain();

=
4] | 3

Generate code | Cancel |

19.

Finally, select “Generate code” to save our generated source code to disk.
Save the persistent object data file we've created by using the “File”
menu’s “Save” option, and exit Zinc Designer.

38 Zinc Application Framework 5

Part Two—
Source Code

Header file

Congratulations! You're almost done and you've performed some sophisti-
cated tasks in Zinc Designer. Take a break and get ready to do some “real”
programming.

In Part One, Zinc Designer created the following four files:

File Purpose

eventl.cpp Source code to the main process of our application.
This code initializes ZAF, loads the window we
designed, starts the main control loop, and shuts
down gracefully when we're done. “Hello World 1”
discusses this code in detail.

eventl.hpp Main header file for our application. This code
defines a derived persistence class used to access our
data file.

eventl.inc Static tables containing information used when

accessing the Zinc data file. This file is “#include”d
by eventl.cpp.

eventl.znc The Zinc persistent object data file containing our
actual user interface definition.

As we continue building “Event Window” we’re going to add to the source
code created by Zinc Designer. The most critical addition is to define our
derived “EventWindow” class.

Let's create new header and source files using the name we specified for
“INCLUDES” in the data file: “eventwnl.hpp” and “eventwnl.cpp”. Com-
pleted versions of these files are listed below with detailed discussions follow-

ing.

/I COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.HPP
/I Zinc Software Incorporated. Pleasant Grove, Utah USA
/I May be freely copied, used and distributed.

#include <zaf.hpp>

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_ BACKGROUND =10002;

class EventWindow : public ZafwWindow

{

Event Window 39

Header file walk-
through

public:
/I -- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

Il —- Persistent members ---
EventWindow(const ZaflChar *name, ZafObjectPersistence
&persist);

#include <zaf.hpp>

The header file “zaf.hpp” includes all the header files necessary for defining
classes used in a ZAF application. Every ZAF application must include it.
(Actually, the code generated by Zinc Designer automatically includes this
header, but since we need it earlier in the compile process we'll include it here
as well.)

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_BACKGROUND = 10002;

These constants will allow us easy access to the three user-defined events we
need to change colors, and make our code more readable. They must match
the values we specified in Zinc Designer.

class EventWindow : public ZafWindow

{
public:
/I -- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

Il —- Persistent members ---
EventWindow(const ZaflChar *name, ZafObjectPersistence
&persist);

%
Our “EventWindow” class is derived from ZafWindow since that is the base
window type we created in Zinc Designer. ZafWindow will give us all the
functionality of a normal window and we’ll then add a bit more of our own. In
our declaration we add three pieces required by our application:

* A virtual destructor is defined. This does nothing—it is even empty—and is not
strictly necessary since the compiler will automatically generate one for us if we

40 Zinc Application Framework 5

Source file

Source file walk-through

forget. Still, it is good coding practice to supply a destructor for all objects and we
have done so here.

* An Event() method is defined to intercept the three user-defined events for our
color changes.

* A persistent constructor is defined to load our derived window from the data file.

/I COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.CPP
/I Zinc Software Incorporated. Pleasant Grove, Utah USA
/I May be freely copied, used and distributed.

#include "eventwnl.hpp"

EventWindow::EventWindow(const ZaflChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)
¢

ZafEventType EventWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
case RED_BACKGROUND:
SetBackgroundColor(ZAF_CLR_RED);
break;

case GREEN_BACKGROUND:
SetBackgroundColor(ZAF_CLR_GREEN);
break;

case BLUE_BACKGROUND:
SetBackgroundColor(ZAF_CLR_BLUE);
break;

default:
/I Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

retumn (ccode);

#include "eventwn1.hpp"

First, we include our header file “eventwnl.hpp” to provide definitions for our
constants and derived class.

Event Window 41

EventWindow::EventWindow(const ZaflChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)

{

Next, our simple persistent constructor simply calls the base class (ZafWin-
dow) persistent constructor to load our window from the data file. We needn't
do anything else here, since we don't define any additional data for the
EventWindow class.

ZafEventType EventWindow::Event(const ZafEventStruct &event)

{
ZafEventType ccode = LogicalEvent(event);

switch (ccode)

{
case RED_BACKGROUND:

SetBackgroundColor(ZAF_CLR_RED);
break;

default:
/I Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

return (ccode);

The Event() method first calLogicalEvent() to translate all incoming events

to their portable equivalents, then we trap each event that interests us:
RED_BACKGROUND, GREEN_BACKGROUND, and BLUE_BACK-
GROUND. When we find a matching event, each case SetBackground-

Color() to change the background color of the window. In the “default” case,

all other events are passed to the base class Event() method for normal process

ing.

That's it! We've added some simple source code to a Zinc Designer project to
create an interesting, working application. In the process we've demonstrated
how easy it is to utilize ZAF's sophisticated event architecture.

We're now ready to build an executable and test it.
Finishing Up

Create amake file and Our final step is to create a make file. To build one on your own look at the
build the application make files included with the ZAF example programs and refer to the documen-

42 Zinc Application Framework 5

Additional
Study

tation for your compiler’s make utility, or Zinc's recommended “zmake” if you
prefer.

To speed the process along, just copy the file “zmake.mak” (for Windows) and
any support files needed (such as “wtest16.def” for 16-bit Microsoft Win-
dows). This will link together the necessary ZAF libraries, along with
“eventl.cpp,” generated by Zinc Designer, and our “eventwnl.cpp.”

Now, build the application using zmake or your own make utility and enjoy!
You're on your way to becoming a Zinc expert.

+ Event Window M= E3
File Colar

For more practice working with events, look at the expansion to this applica-
tion, “Event Window 2" found in example/event. This example program dem-
onstrates the trapping of system events coming frormouse ankeyboard,
shows derived child objects, sends events LZafEventManager::Put(), uses

C type user functions and more.

In the next chapter we’ll look at another of ZAF’s fundamental architectures—
Model / View.

Suggested Study 43

Suggested Study

With an understanding of Zinc's basic architecture, you are ready to begin pro-
gramming with ZAF. For additional information, see the Programmer's Refer-
ence manual and closely examine the example programs provided with ZAF.

Zinc’s reference manual is unlike any reference you have used before. It con-
tains a great deal of example code, and provides architectural and practical dis-
cussions in an interesting format. In short, the ZAF reference manual is
readable!

Before delving deeply into large scale projects using ZAF, you may wish to
study the following information:

ZafwindowObject—the most important base class in ZAF.
Zafwindow—a critical base class.

Appendix: Property Matrices—quick reference to the capabilities and limitations
of ZAF user interface objects.

Appendix: Event Definitions—essential information about event types and possi-
bilities.

Example programs—carefully selected programs that demonstrate important pro-
gramming techniques. Careful study of these examples will provide the best start
to programming with ZAF.

44 Zinc Application Framework 5

Index

Index 47

A

Add
HelloWorld 1....... 19
AddGenericObjects
HelloWorld 1....... 19

Allocation of Risk
Personal License Agree-

ment...........| ix
Applications
Professional License
Agreement. v
Apply
HelloWorld 2. 22

B

Browser Window
HelloWorld 2. 22

Building a Simple Apg. .17

C

Callbacks
EventFlow 32
Center
HelloWorld 1. 19
Code Generation
Event Window 37
HelloWorld 2. 25
Construction
Personal License Agree-
ment............ iX
Professional License
Agreement. vii

Control
EventFlow......... 30
Hello World 1 20

Copies
Personal License Agree-

ment........... viii
Professional License
Agreement. Vi

D

Derivation
EventFlow......... 32
Designer Basic:........ 21
destructor
Event Window. 39
Developer
Personal License Agree-
ment........... viii
Professional License
Agreement....... v

Direct Event Routing

EventFlow......... 31
Disclaimer
Personal License Agree-
ment............ ix
Professional License
Agreement. Vi

Disclaimer of Warranties

ment............ iX
Professional License
Agreement. Vi

Disclaimers and Limitations
Professional License
Agreement. Vi

Distribution Guidelines
Professional License
Agreement....... v

Distribution Rights
Personal License Agree-

ment viii
Professional License
Agreement. v
Documentation
Personal License Agree-
ment viii
Professional License
Agreement. v

E

Entire Agreement
Personal License Agree-

ment 4
Professional License
Agreement. vi

Event

Event Flow. 31

Event Window. 40
EventFlow. 29
Event Handling

Event Flow. 32
Event Manager

Event Flow. 30
Event Mapping

Event Flow. 33
Event Routing

Event Flow. 31
Event Window. 34
Event Window 2

Event Window. 42
eventl.cpp

Event Window. 38

EventWindow
Event Window. 39

48 Zinc Application Framework 5

Export Laws
Personal License Agree-
ment............ iX
Professional License
Agreement. vii

G

General Model

Event Flow 29
Generate Code

HelloWorld 2. 26
Get

Event Flow 31
Getting Startec. 15

Governing Law
Personal License Agree-

ment...........| iX
Professional License
Agreement. Vi
HelloWorld1 17
HelloWorld2 21

How Does ZAF Work". .15

#include
Event Windovr 39

#include <zaf.hpp>
HelloWorld1....... 18

INCLUDES
Event Window. 37

keyboard events

Event Window42

L

License
Personal License Agree-
ment........... viii
Professional License
Agreement....... v

License Agreement
Personal Versiol. . . viii
Professional Versiol. . v

Limitation on Liability
Personal License Agree-

ment............ 4
Professional License
Agreement. vi

Limited Warranty
Professional License

Agreement. vi
Linkable Routines and Distrib-
utable Files
Personal License Agree-
ment........... viii
LinkMain
HelloWorld 1. 19
LogicalEvent
EventFlow......... 33
Event Window. 41

M

Main
HelloWorld 1 18

Media and Documentation
Professional License

Agreement. Vi
menu editor
Event Window. 35

mouse events
Event Window. 42

N

Non-Parties
Personal License Agree-
ment iX
Professional License
Agreement. Vi

O

OS Events
Event Flow. 31

P

persistent constructor
Event Window. 40

Personal Applications
Personal License Agree-
ment viii

Personal Version
License Agreemer. . viii

Platforms supporte 15

Index 49

pop-up menu
Event Window 36

Professional Versiol. v, viii

Property Sheet
HelloWorld 2. 22

Protection of the Software
Personal License Agree-

ment...........| ix
Professional License
Agreement. vi
Put
Event Window 42

R

Responsibility for Decisions
Personal License Agree-

ment...........| ix
Professional License
Agreement. vi
return
HelloWorld 1. 20

S

Send message

Event Window 36
SetBackgroundColor
Event Window 41
Software
Personal License Agree-
ment........... Viii
Professional License
Agreement. V, Vi

Sole Remedy and Allocation
of Risk
Professional License

Agreement. Vi

Source Code
Personal License Agree-

ment............ ix
Professional License
Agreement. Vi
StringID
Event Window. 34
HelloWorld 2 23
Suggested Stud. 43
Termination
Personal License Agree-
ment............ iX
Professional License
Agreement. vii

Top-Down Event Routing
EventFlow......... 32

U

U.S. Government Restricted

Rights
Personal License Agree-
ment............ iX
Professional License
Agreement. vii
Undo
HelloWorld 2 22

user functions
Event Window. 42

W

What Is ZAF? 15
WINDOWS
Event Window. 37
HelloWorld 2 25

Z

ZAF 5 General Model

Event Flow. 29
ZAF Events

Event Flow. 31
ZAF General Model

Event Flow. 29
ZAF _ITEXT

HelloWorld 1 19
ZAF_NUMID_PULL_DOW

N_MENU

Event Window. 35
ZafApplication::Main

HelloWorld 1 18
ZafErrorSystem

HelloWorld 1 19
ZafHelpTips

HelloWorld 1 19
Zafll8nData

HelloWorld 1 19
ZafPullDownMenu

Event Window. 35
ZafWindow

Event Window. 35

HelloWorld 1 19
zmake

HelloWorld 1 17

50 Zinc Application Framework 5

HelloWorld 2. 26

	Contacting Zinc
	Software License Agreement Professional Version
	Software License Agreement Personal Version
	Quick Start
	Getting Started
	Hello World 1
	Hello World 2

	Architecture Basics
	Architecture Basics—Event Flow
	Event Window
	Suggested Study

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

