
qflog - The Manual

Version 0.95.1

Gregor Schmid
Quality First Software

Copyright c© 2000 Quality First Software, Gregor Schmid

July 10, 2000

1

Copyright

The contents of this manual are subject to the Mozilla Public License Version
1.1 (the ”License”); you may not use this manual except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an ”AS IS” basis, WITH-
OUT WARRANTY OF ANY KIND, either express or implied. See the License for
the specific language governing rights and limitations under the License.

The Original Code is qfs.de code.

The Initial Developer of the Original Code is Gregor Schmid. Portions created by
Gregor Schmid are Copyright (C) 1999 Quality First Software, Gregor Schmid. All
Rights Reserved.

Contributor(s):

2

Preamble

When we set out to develop our products for Quality First Software1, we knew
one thing for sure: we were going to need a good logging system. The Java
debuggers available at the time were impractical and very slow, so we wanted
log messages of a quality that make debugging unnecessary. The trouble is,
once you can get valuable information out of logging, you start to use it a lot,
which can lead to useless noise, cluttering the important messages and to serious
drawbacks in terms of CPU and memory usage. To get this under control we
created the de.qfs.lib.log package of our free library qflib2, which takes care
of log message creation and dispatch, and the log server qflog which serves as
the user interface to the logging system.

As a tribute to the free software community, which has produced so much great
software over the years and without which Quality First Software would not exist,
we decided to place qflib and qflog under an Open Source license and make them
freely available.

We hope that qflog is of as much use to you as it is to us and that this manual
provides all the information you need to get the best out of it. If you have any
problems, questions or suggestions, please let us know at qflog@qfs.de.

One more thing: as you may already have noticed we are not native English
speakers. So please, bear with us and if you feel like it, let us know about our
spelling and grammatical mistakes, so that in time this manual may become a
good read even for the English audience.

Gregor Schmid3, Munich, May 8 2000

1http://www.qfs.de
2http://www.qfs.de/de/projects/qflib/index.html
3email: gs@qfs.de

3

Contents

1 Introduction 6

1.1 Functionality . 6

1.2 Application . 6

2 Installation 8

2.1 Requirements . 8

2.2 Installation . 8

2.3 RMI registry . 9

3 Invocation 10

3.1 Invocation syntax . 10

3.2 Options . 10

4 Operation of the main window 12

4.1 Loading and saving log files . 13

4.2 Opening a log window . 13

4.3 Removing clients . 13

4.4 Settings . 13

4.4.1 General settings . 13

5 Operation of the log window 15

5.1 General . 15

5.1.1 Structure of a log window 15

5.1.2 Saving to a log file . 16

5.1.3 Loading and saving the configuration 16

5.2 The table . 17

5.2.1 Copying messages . 18

5.2.2 Deleting messages . 18

CONTENTS 4

5.2.3 Extra filters in the table . 18

5.2.4 Setting and jumping to marks 18

5.2.5 Incremental search . 19

5.2.6 Options . 19

5.3 The detail view . 20

5.4 The filter tree . 20

5.4.1 The structure of the tree . 20

5.4.2 Setting the filter levels . 22

5.4.3 Displaying defined levels 22

5.4.4 Additional filter mechanism 22

5.5 The client’s log levels . 23

5.5.1 The structure of the tree . 23

5.5.2 Setting the levels . 23

5.5.3 Displaying defined levels 24

5.5.4 Options . 24

6 A sample application 25

6.1 Invocation . 25

6.2 Options . 25

6.3 Example uses . 26

A qflog and applets 28

A.1 Internet Explorer . 28

A.2 Netscape . 28

A.3 Plugin . 29

A.4 Example applet . 29

5

List of Figures

4.1 The main window . 12

5.1 A log window . 16

5.2 The table displaying the log messages 17

5.3 The detail view . 20

5.4 The filter tree . 21

5.5 The level tree . 24

6

Chapter 1

Introduction

The log server qflog is a valuable aid in browsing log messages. By sorting mes-
sages and applying various kinds of filters one can easily locate the information
one is looking for. qflog also helps to keep control over the amount of logging be-
ing done. This manual explains what functionality qflog offers, how it is installed
and how to use it.

1.1 Functionality

qflog is coupled tightly with the de.qfs.lib.log package of qflib, but it is pos-
sible to view log files created by other programs, even non-Java ones, as long as
the messages are correctly formatted. At the moment, only the format used by
qflib is supported, but it would be easy to create import filters for other formats.

At the heart of qflog is the log window, which contains components for the two
central functions of qflog:

• The message display with sorting, multiple filters, incremental search and
markers.

• The interface for the parameters that are used to control the creation of log
messages.

Operation of the log window is explained in chapter 4.4.1.

1.2 Application

There are three basic methods by which log messages can find their way into the
log window:

• A program saves its messages to a log file, which is then read with qflog.

1.2. Application 7

• A client/server connection is opened between qflog and a program.

• The log window is embedded directly into a program.

Control over log message generation may only be gained in the last two cases,
since nothing is known about the source of messages read from a log file.

At the moment RMI is the only protocol supported for client/server communica-
tion. If there is a demand, CORBA or direct socket communication might be
implemented as well, which would make qflog accessible by non-Java clients.

8

Chapter 2

Installation

2.1 Requirements

qflog comes in two flavours, one for JDK 1.1 with Swing 1.1 and one for JDK 1.2
and above. Both versions are essentially the same, the only difference being the
location of the collection classes.

The collection framework is a part of the Java Foundation Classes (JFC). With the
release of JDK 1.2 the JFC were integrated into the standard Java class library.

Since the collection classes are far superior to their predecessors Vector and
Hashtable , use of them is widespread throughout qflog. SUN has
released a JDK 1.1 compatible version of the collection classes under
http://java.sun.com/beans/infobus/#DOWNLOAD_COLLECTIONS. To use qflog
with JDK 1.1, the collections.jar archive from the above release must be
present on your CLASSPATH.

Since qflog is built on top of our free Java library qflib1, you will have to get that
as well. The current release is available from our download2 page.

2.2 Installation

Once you have the current versions of qflog and qflib, unpack both archives wher-
ever you like. Please read and follow the installation instructions for qflib. In a
typical environment the following should suffice:

JDK 1.1
Ensure that the archives qflog_11.jar and qflib_11.jar are on your
CLASSPATH, as well as Swing (swingall.jar) and the collection classes
(collections-1.1.jar).

1http://www.qfs.de/en/projects/qflib/index.html
2http://www.qfs.de/en/download.html

2.3. RMI registry 9

JDK 1.2
Either add the archives qflog_12.jar and qflib_12.jar to your
CLASSPATH, or copy them directly into the jre/lib/ext directory of your
JDK /JRE installation.

There is a start script for qflog, named qflog for Unix and qflog.bat for Win-
dows, in the bin directory of the qflog distribution, which you should copy to a
directory on your PATH.

To save its configuration, qflog needs write access to a directory somewhere.
Unless you start it with a different option (see section 3.1) qflog writes its files
into the directory .qflog located in your home directory on Unix or Personal
Files on Windows.

2.3 RMI registry

To use the client/server functionality of qflog you should have an RMI registry run-
ning in the background. This can be achieved with the help of the rmiregistry
program that comes with every JDK or JRE.

Both qflog and its clients can create an RMI registry if necessary. The disad-
vantage of this approach is that other programs that register themselves with this
registry will become unreachable once qflog or the client are terminated.

To make the use of RMI as simple as possible, all the classes involved (the so
called stubs and skeletons) are included with qflib, so no web server is needed.
As a consequence qflib must be on your CLASSPATHor in the jre/lib/ext
directory of your JDK at the time that rmiregistry is executed.

10

Chapter 3

Invocation

During startup of qflog the following steps are executed, which may be modified
or suppressed through options passed on the command line:

• If no RMI registry is running on the machine, qflog creates its own (see
section 2.2 and section 3.1).

• Afterwards qflog registers itself as a log server in the RMI registry.

• Then the registry on the localhost or on remote hosts is searched for clients
waiting for a log server to contact them.

• Finally the log files passed on the command line are read.

3.1 Invocation syntax

The syntax for invoking qflog is

java [java-options...] de.qfs.apps.logserver.Start
[qflog-options...] [file...]

or, using the qflog or the qflog.bat script,

qflog [qflog-options...] [file...]

The files given as arguments will be read and displayed in the main window.

3.2 Options

qflog knows about the following options:

-configfile <filename>
Specifies the file where qflog saves its configuration, which includes loca-
tions and dimensions of its windows as well as filter informations for different

3.2. Options 11

clients. The default value is /.qflog/config for Unix and Personal
Files \.qflog \config for Windows. The directory in which this config
file resides is also used as default location for saving and restoring the con-
figuration of a log window (see section 5.1.2).

-nocreateregistry
This option prevents qflog from creating its own RMI registry if it can’t find
one. If this option is given and no RMI registry is available, qflog can not be
used as a log server.

-noquery
Suppresses the search for clients, both as the default behaviour or initiated
with the -query Option.

-noserver
Prevents qflog from registering itself with the RMI registry. The options -
port and -servername are ignored in this case. The -query option is
not affected.

-optionfile <filename>
This option names a file or URL that contains further qflog options. It must
use the standard property file format, i.e. contain lines of the form name =
value . Options given on the command line override options read from the
option file.

-port <port number>
Defines the port number for the RMI registry to search or to create if none
already exists. The default value is 1099, the ”well known port” of the RMI
registry.

-query <[host][:port]>
If neither -query nor -noquery are specified, qflog queries the RMI reg-
istry of the host it is running on under the standard registry port 1099 for
clients awaiting contact. With -query , which can be specified multiple
times, the hosts and ports to query are given as arguments. An empty
argument is equivalent to localhost .

-servername <name>
The name under which qflog registers itself in the RMI registry. Default is
”qflog” .

-serverhost <host>
This option determines the name of the host qflog is running on. It is usually
not necessary, but can be helpful if you experience problems with name
resolution, causing trouble when clients try to connect to qflog.

-version
If -version is specified, all qflog does is print its version number and ter-
minate immediately.

12

Chapter 4

Operation of the main window

After qflog starts up, the main window (figure 4.1) is displayed. It contains a list of
the log files read and of the clients that are connected to the log server. A running
number is used to disambiguate multiple instances of identically named clients.
Beyond that, the number of messages, the time the client connected at or the file
was read and the state of the client are shown. The state is one of file, connected
client or disconnected client, represented by an icon.

From the main window, log windows for the clients and the log files can be opened,
new log files can be read, stale files and clients can be removed and a few general
settings can be changed.

Upon termination of qflog, active connections to clients are closed and the current
configurations are saved, including those of the log windows (see section 3.1 on
how to define the config file).

Figure 4.1: The main window

4.1. Loading and saving log files 13

4.1 Loading and saving log files

With the File→Open... menu, a log file can be read via a standard file selection
dialog. If the file was created with qflog, the client’s name will be retrieved from
the file, otherwise the client name ”unknown” is used.

To save the log messages of the currently selected client, use the
File→Save as... menu. The file selection dialog is used to determine the file in

which all messages from the client that are available at the moment are saved.
Saving only a part of the messages can be done from the log window (see
section 5.1.1).

4.2 Opening a log window

The log window for the selected client can be opened either by pressing the�� ��Return key, or through the Edit→Show... menu.

4.3 Removing clients

While true clients are removed automatically from the main window, depending
on qflog’s configuration, log files must be removed by hand. To get rid of the
selected client’s or log file’s messages, either press

�� ��Delete or use the
Edit→Remove client menu.

4.4 Settings

The dialog through which qflog’s settings are changed is available via the
Edit→Options... menu.

4.4.1 General settings

The following settings are used to limit the number of clients handled simultane-
ously, in order to keep memory usage in check. All values apply to clients only,
not to log files. If one of the values is exceeded, clients are removed, where dis-
connected clients are removed before connected clients and older clients before
younger ones.

Maximum number of clients
Maximum for the total number of clients allowed, either connected or dis-
connected.

4.4. Settings 14

Maximum number of clients per name
Limits the number of clients connected under the same name, independent
of the state of the connection.

Maximum number of disconnected clients
A limit for disconnected clients, independent of their name.

Maximum number of disconnected clients per name
This value limits the number of clients that connected under the same name
and are now disconnected.

15

Chapter 5

Operation of the log window

5.1 General

5.1.1 Structure of a log window

A log window (figure 5.1) holds up to five components, four of which can be turned
on or off at will.

Messages are displayed in the table. Additionally the message that was selected
last is shown in the detail view. Which of the messages are visible is determined
with the filter component.

The log levels component is available only for clients, not for log files. When
a client disconnects, the level component stays active but is no longer useful
except to display the setting of the client’s log levels before the connection was
terminated.

The menus for the operation of the three main components Messages, Filter and
Level, are named accordingly Messages , Filter and Level . Each of the com-
ponents has a context menu as well, that is identical to the corresponding main
menu.

There is not much to say about the status line except for the three numbers in the
right corner. From left to right they stand for

• The number of messages currently visible in the table.

• The total number of messages currently available to the log view, i.e. the
visible messages plus those suppressed by a filter.

• The total number of messages for this window including those that were
deleted.

Except for the messages table, all components can be turned on or off via the
View menu.

5.1. General 16

Figure 5.1: A log window

5.1.2 Saving to a log file

In the File menu are two menu items that will save messages from the log
window into a log file. In both cases the file is selected with the standard dialog.
As the names suggest, using Save all messages as... will save all messages,
including invisible ones, in the order they were created. To save only the
messages currently visible in the order imposed by the table, use
Save visible messages as... .

5.1.3 Loading and saving the configuration

All settings for the log window and its components are saved by qflog in its config
file when it shuts down (see chapter 3.2). Though a separate configuration is used
for every distinct client name, this is often not enough, since different sets of filter
settings for the same client may be useful at different times. To that end, a log win-
dow’s configuration can additionally be saved via File→Save configuration as...

and restored with File→Restore configuration... .

5.2. The table 17

Figure 5.2: The table displaying the log messages

5.2 The table

The main part of a log window is the table displaying the messages (figure 5.2).
It is always visible and cannot be turned off.

The columns of the table correspond to the elements of a log message.

Level
The level of a message is shown as an icon. How icons and levels correlate
is best seen by looking at the Filter or the Level menu.

Time
The time at which the message was generated, accurate to the millisecond.

Thread
The name of the thread in which the message was generated.

Class
The class of the object or the static method that generated the message.

Method
The method from which the message originated.

Message
The content of the message.

The order and width of the columns can be adjusted. These settings are saved
separately for each client.

The sort order of the table rows is depicted by a small blue arrow in the header
of a column. One single mouse click on a column header sets the sort order
according to that column, another click in the same column reverts the direction.
The same effect can be achieved for the selected column by pressing

�� ��Ctrl-S or
via Set sort column .

5.2. The table 18

5.2.1 Copying messages

Using the menu items Copy selected messages , Copy visible messages and

Copy all messages , you can copy messages into the system clipboard. Care
should be taken to avoid overextending certain operating systems by copying too
many messages.

The format of the copies is the same as that used for a log file.

Unfortunately the system clipboard is not implemented correctly in some JDK
versions, JDK 1.1 for Linux among them, so that this functionality is not available
everywhere.

5.2.2 Deleting messages

Sometimes it can be useful to delete some or even all of the current messages
to get a better overview or to emphasize new input from a client. The
menu items Delete all messages , Delete invisible messages and

Delete visible messages will do just that.

5.2.3 Extra filters in the table

Which messages are visible in the table is determined mainly by the filter com-
ponent. An additional filter mechanism inside the table can be used to further
restrict this selection.

This extra filter can be activated for the columns Level, Thread, Class and Method.
It reduces the visible messages to those which have in that column a value iden-
tical to the currently selected message. As an example, if you turn on the extra
filter for the Level column while the selected message has a level of ERR, only
messages with this level will be displayed.

The extra filters for different columns can be combined. This way it only takes a
few keystrokes to e.g. restrict the view to messages belonging to the
Thread named AWT-EventQueue-0 and originating from the class
de.qfs.lib.gui.SwingUtil .

Toggling an extra filter is either done through the menu item Toggle column filter

or the
�� ��Ctrl-F key. To turn off all extra filters at once, use

�� ��Ctrl-K or
Clear all column filters .

5.2.4 Setting and jumping to marks

Up to 10 different marks can be set on the rows of the table in order to simplify
navigation. Unfortunately there is no visual feedback yet about which marks are

5.2. The table 19

set on which messages.

To set a mark, use the Set mark sub-menu, or the key combinations
�� ��Alt-0

through
�� ��Alt-9 . Similarly, jumping to a mark is done via the Goto mark sub-menu

or the key combinations
�� ��Ctrl-0 through

�� ��Ctrl-9 .

It is possible, depending on the filter settings, that the message on which a mark
was set is not visible when you try to jump to it. In that case the entry closest
to the marked one with respect to the current sort order is used. If a marked
message is removed, either explicitly or due to message numbers exceeding the
limit, the mark is unset and not moved on to the next message available, since
that might be confusing.

5.2.5 Incremental search

The incremental search in the message table is a vital function that is constantly
active. To start a search, simply type some text on the keyboard.

Searching is always done in the current column. Of course in the Level column
you can only search for the level. In this case, use the keys

�� ��0 through
�� ��9 , where�� ��1 searches for level ERR,

�� ��9 for DBGand
�� ��0 for DBGDETAIL.

In all other columns, arbitrary text can be searched, where case is not significant.
The current search pattern is displayed in the title of the table component. The�� ��Backspace key will remove the last character from the pattern,

�� ��Escape clears it.

The following keys are working in all columns, including the Level column:
�� ��Ctrl-R

reverses the direction of the search,
�� ��F2 copies the selected message’s value for

the current column into the search pattern and
�� ��F3 repeats the search.

Searching always moves you to the next message, depending on search direction,
that contains the search pattern anywhere in the current column, not necessarily
at the beginning. When the end of the table is reached, the search is continued
from the other end. This is signaled through the string wrapped displayed next to
the search pattern, which is also where a failed search is reported.

5.2.6 Options

There are only two options that can be set for the table: whether to display lines or
not and how many messages it can hold. When the limit is exceeded, the oldest
messages are dropped. A value of 0 means no limit.

The Options... menu item will open a dialog in which these options can be edited.

5.3. The detail view 20

Figure 5.3: The detail view

5.3 The detail view

The most recently selected message is displayed in the detail view (figure 5.3),
where the level is represented by its icon and thread, time, class and method are
shown as labels. The message itself, which can be of arbitrary length, is shown
in a multi line text area to which you can navigate with the

�� ��Tab key or the mouse
in order to scroll it by means of the arrow keys.

The detail view can be removed or displayed at will with the help of the
View→Show detail view menu.

5.4 The filter tree

The filter tree (figure 5.4) is a vital aid in controlling a flood of log messages. With
it you can define for each package, class or method up to which level messages
originating from it will be displayed.

Multi selection is enabled for the filter tree. All actions operate on all selected
nodes, no matter whether they are initiated through the Filter menu, the context
menu or the keyboard.

Every change of the filter settings causes a redisplay of the messages in the table.
Every effort is made to keep the row selection in the table intact at least for those
messages that are still visible under the new setting. Also an implicit mark is
set on the most recently selected message, which the display jumps to after the
change.

5.4.1 The structure of the tree

The classes and methods of all messages in the log table are arranged into a tree
structure, where the methods are nested inside their classes, while classes are

5.4. The filter tree 21

Figure 5.4: The filter tree

collected inside their package. All packages are placed directly below the root
node and not according to the directory structure they represent, i.e. the package
nodes de.qfs.lib.config and de.qfs.lib.gui are not child nodes of the
node for the package de.qfs.lib but of the root node.

A level can be assigned to every node in the tree. Messages belonging to that
node will be displayed in the table only if their level is less than or equal to the
one set on the node. ”Belonging to a node” means, that the message originated
from a method that is represented by the node, or whose node is a descendant
of the node. When deciding whether a message is displayed, the method node is
checked first, then the class node, if no level is defined on the method node, then
the package node and finally the default level of the root node.

As an example the settings shown in figure 5.4 would have the following effect:

• The default value is WRNDETAIL. All messages for which nothing else has
been defined will be displayed up to that level.

• Messages originating from classes belonging to the
de.qfs.apps.qftest.edit package are displayed up to the level
DBGDETAIL, the highest level available.

• This does not hold for messages coming from the class
de.qfs.apps.qftest.edit.Edit , for which the level MSGDETAILhas
been set.

• Also excluded are messages from the method requestInitialFocus()
in the class de.qfs.apps.qftest.edit.AbstractStepEdit , since
the level MTDis defined for these.

5.4. The filter tree 22

This level hierarchy makes it easy to narrow the table view down to the prob-
lem area. If, on closer inspection, you find that you need more information, simply
ease the filter setting a little. You have to keep in mind though, that only messages
that have been generated in the first place can actually be displayed. Controlling
the generation of the messages is very similar to using the filter tree and is de-
scribed in section 5.4.4.

From experience there are always some trouble spots in a program that are es-
pecially delicate and cause recurring problems. By saving the configuration of the
log window (see section 5.1.1) you will also save the filter settings, enabling you
to work on the same problem area again should the need arise.

5.4.2 Setting the filter levels

The easiest way to change the filter settings is through the keys
�� ��0 through
�� ��9 .

Again the key
�� ��1 stands for the level ERR,

�� ��9 for DBGand
�� ��0 for DBGDETAIL.

Additionally there’s a menu item for every level in the Filter menu and the context
menu of the tree.

There are two variants for clearing filter levels. The simple variant only clears the
levels of the selected nodes and is available via Remove level or the

�� ��Delete
key. The recursive version, accessible via Remove recursive or

�� ��Ctrl-Delete ,
additionally clears the levels on all direct or indirect descendants of the selected
nodes.

5.4.3 Displaying defined levels

To find out which levels are set in the filter tree, use the Display set levels menu
item. It causes the nodes of the tree to collapse or expand as necessary, so
that all explicitly set levels are visible. This is also the initial display when the log
window is opened or the configuration is restored.

5.4.4 Additional filter mechanism

There is an additional filter mechanism available for the filter tree that is similar
in a way to the extra filter in the table (see section 5.2.2), but with a different
character.

The whole mechanism can be toggled on or off via the
�� ��Ctrl-F key or the

Toggle extra filters menu item.

Each node in the tree can be declared an extra filter with the
�� ��Ctrl-A key or the

Add extra filter menu item. An extra filter node is displayed in a red font, when-
ever the extra filter mechanism is turned on.

5.5. The client’s log levels 23

This designation can be removed for the selected nodes with
�� ��Ctrl-R and

Remove extra filter , or for all nodes with
�� ��Ctrl-K and Clear extra filters .

Activating the extra filters causes a further reduction of the messages in the ta-
ble. In addition to the normal filter function of the tree, only those messages are
displayed that belong to a node marked as an extra filter. Again, ”belong” is inter-
preted recursively, i.e. an extra filter for a class will enable the messages for all
methods of that class, assuming that they are not suppressed by the filter level
settings.

This extra filter mechanism is intended as a simple means to achieve a short
term increase of the filter effect, without having to modify the levels. For example,
by activating two method nodes as extra filters you can study the interaction just
between those methods, putting it back into context after deactivating the extras.

Due to the short term character of the extra filters they are not saved in the con-
figuration like the filter levels.

5.5 The client’s log levels

This component is available only when the log window is either embedded directly
in a program or belongs to an RMI client. It gives access to all the settings of the
client that determine which log messages are generated. Its operation is similar
in many respects to that of the filter tree (see section 5.3).

5.5.1 The structure of the tree

As figure 5.5 shows, the structure of the level tree is similar to that of the filter
tree (see section 5.4), except for two differences: the hierarchy ends at the class
level, i.e. there are no method nodes, and packages do nest according to the
directory structure they represent. Thus the package de.qfs.apps.qftest
is nested four levels deep under the root node and the nodes de , de.qfs and
de.qfs.apps .

Both differences arise from the need for the level tree to represent the structure
of the levels of the Logger objects in the client.

5.5.2 Setting the levels

The levels of the classes and packages of the level tree are set and cleared sim-
ilarly to the levels in the filter tree (see section 5.4.1), i.e. through the keys

�� ��0
through
�� ��9 ,
�� ��Delete and
�� ��Ctrl-Delete , the Level menu or the context menu.

5.5. The client’s log levels 24

Figure 5.5: The level tree

5.5.3 Displaying defined levels

Also similar is the method to get an overview over which levels are set. Use the
Level→Show set levels menu like in section 5.4.2.

5.5.4 Options

There are quite a few Options that can be set in the dialog accessible through the
Options... menu item. Except for the last, these values correspond to the param-

eters used by the logging system in the client. Please read the documentation of
the de.qfs.lib.log.Log class to learn what their use is.

The check button named ”Override client’s configuration on connect” is different.
It determines the behaviour of qflog the next time a client with the same name
connects. If the option is not checked, the client’s settings will be read, otherwise
the parameters for the logging system of the client and the levels from the level
tree override the settings inside the client. This option will be more useful, once
an option to reset the client to its original values on disconnect is also available.

25

Chapter 6

A sample application

qflog comes with a test client that can be used to test and demonstrate the various
ways of interaction between a client and qflog. It generates random messages
from a number threads and can redirect those to a log file, bring up an internal
log window or communicate with qflog via RMI

6.1 Invocation

The test client can be invoked either directly with

java [java-options...] de.qfs.apps.qflog.TestClient
[options...]

or with the startscripts provided in the bin directory of the qflog distribution:

testclient [options...]

After the launch a trivial window with a button that exits the client appears and
logging starts depending on the arguments given.

6.2 Options

The following options are defined for the test client:

-allownonlocal
Allows a qflog server from a host other than localhost to access the client.

-clientname <name>
Sets the name under which the client registers itself with qflog. The default
is ”testclient” .

-configfile <file>
Determines the file used for saving and loading the configuration.

6.3. Example uses 26

-createregistry
Enables creation of an RMI registry, if none is available during the start of
the client.

-internal
Creates an internal log window that is opened when the client starts.

-logfile <file>
Causes log messages to be written to a file.

-logserver <servername>
Tells the test client to connect to a log server. The name to use is ”qflog” ,
unless qflog has been started with a different -servername option.

-numloggers <number>
Determines the number of threads that create log messages. Default is 3.
The first thread will create one message per second, the second thread one
every other second, the third every 3 seconds and so on.

-outputlevel <level>
Sets the level up to which log messages will be printed on System.err .
The value 0 suppresses all messages, 10 lets all messages pass. Default
is 2.

-port <portnumber>
Sets the port number for the registry with which the client should register to
wait for a log server.

-waitforserver
Tells the client to register with the RMI registry, so a log server is able to
connect to it at a later time.

Additionally options of the form -log-<name> <level> may be used to set the
levels of the Loggers. Please see the example section in the qflib documentation
for details.

6.3 Example uses

Simply try out a few examples to get a feel for how qflog works:

• testclient -internal shows what the log window for the test client
looks like. Play with the settings in the filter and level trees and watch the
result.

• First bring up qflog then launch testclient -logserver qflog . You
should see an entry named ”testclient” in the qflog main window. Bring
up the log window for the client, it is similar to the internal one.

6.3. Example uses 27

• You can combine these examples with testclient -internal
-logserver qflog , bringing up the internal log view as well as
connecting to the log server. Notice how changes to the level tree in one
window are immediately reflected in the level tree in the other window.

• Start the test client first with testclient -waitforserver
-createregistry and then run qflog. Again you should find a
”testclient” entry in its main window.

28

Appendix A

qflog and applets

The communication between an applet and qflog is not without problems. One
reason is the missing RMI support in most versions of Microsoft’s Internet Ex-
ploer. Another is the sandbox which restricts an applet’s capabilities for security
reasons, causing difficulties with RMI callbacks.

In any case, unless an applet is signed, the sandbox will prevent it from connecting
to qflog on any host other than the one from which the applet was loaded.

Nevertheless, logging through qflog can already help a great deal when devel-
oping applets and it may get a little easier in the future, if other communication
protocols than RMI are implemented.

A.1 Internet Explorer

The main problem when logging from applets running in Internet Explorer is the
missing RMI support in older versions (probably before 5.0). At least for devel-
opment this is not a big deal, since Microsoft is providing a jar archive under
http://www.microsoft.com/Java/resource/misc.htm, which can be installed to get
the necessary classes. With these in place, even RMI callbacks work, so the
applet’s log levels can be controlled at runtime.

A.2 Netscape

All Netscape versions starting around 4.02 support the full JDK 1.1, though only
at version 1.1.4. Applets can connect to qflog without problems, but callbacks
don’t work, making runtime control over the log levels impossible for now. Signing
an applet should help, which we coldn’t test yet.

A.3. Plugin 29

A.3 Plugin

We didn’t have time yet to test applet logging with the Java plugin from SUN. We’d
appreciate any feedback on this, be it for plugin version 1.1 or 1.2.

A.4 Example applet

An applet can be written in such a way that it can be deployed with only the
de.qfs.lib.log package of qflib, while still using the full logging capabilities
during development. The qflib examples1 page has some example code for that.

1http://www.qfs.de/en/projects/qflib/examples.html

