
Mandala/JACOb User’s Guide – April 28, 2004

Pierre Vignéras
“eipi”

eipiequalsnoone@users.sf.net

April 28, 2004

Abstract

This document describes the Mandala/JACOb subpackage, a framework for dynamic
reflective asynchronous remote method invocation entirely written in JavaTM 1 . Dy-
namism means that object’s class do not have to be written with the remote feature in
mind as in RMI to be remotely accessible in an asynchronous manner.

It is entirely based on the concept of active container as JACOb, Java Active Con-
tainer of Objects is an implementation of this concept in Java. This concept imple-
mentation essentially provides the dynamic remote aspect of objects.JACOb uses the
RAMI library which provides mechanisms related to reflective asynchronous method
invocation: chained asynchronism, exception handling, and transparency.

keywords: reflective remote asynchronous method invocation, client-sided asyn-
chronism, server-sided asynchronism, full-asynchronism, total-transparency, semi-transparency

1Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. The author is independent of Sun Microsystems, Inc.

Contents

1 Introduction 4

2 Prerequisite 6

3 The active container concept 7

4 Dynamic remote objects 9
4.1 Introduction . 9
4.2 Dynamic Aspect . 10
4.3 Resource sharing . 12
4.4 Summary . 13

5 Dealing with the JACOb package 14
5.1 The ActiveMap interface . 14
5.2 Dealing with remote objects . 14

5.2.1 Terminology . 14
5.2.2 Direct remote objects : the Remote interface 15
5.2.3 Direct remote active map . 15
5.2.4 Manipulation of stored object: the StoredObjectReference 15

6 Reflective asynchronous (remote) method invocation 16
6.1 Introduction . 16
6.2 Server-side reflective asynchronous (remote) method invocation . . . 17
6.3 Client-side reflective asynchronous (remote) method invocation 18
6.4 Exception handling . 22

7 Advanced techniques 24
7.1 Object caching . 24

7.1.1 Security . 24
7.2 Direct remote communication with stored objects using a custom protocol 24

7.2.1 Just in time security . 24
7.3 Services . 26

7.3.1 Monitoring . 26
7.3.2 Persistence . 26
7.3.3 Transaction . 26

1

8 Conclusion and perspectives 27
8.1 Conclusion . 27
8.2 Perspectives . 27

2

List of Figures

4.1 Stub and skeleton in Java-RMI . 10
4.2 Stub and skeleton in Java-RMI . 11
4.3 Remote active container . 11
4.4 Communication with a stored object 13

6.1 The call() asynchronous mechanism 18

7.1 Object caching . 25

3

Chapter 1

Introduction

Parallel processing is no more limited to expensive supercomputers [?] but can also
make use of clusters of workstations thanks to the growth of processors power and net-
work speed. Programming applications for that kind of environnement is a real chal-
lenge and software tools must be available to ease this task. Distributed applications
tend to be expressed using object oriented languages even if other programming tech-
niques emerge (design patterns [?], application frameworks and component-ware [?],
agent-oriented applications [?], aspect oriented programming [?], etc.). The JavaTM 1

language [?, ?, ?] has proven to be a generic language as many others and is not ded-
icated to so called applets. Even if the Java implementations suffer from performance
problems due to the interpreted nature of the language, Just In Time compilers [?, ?, ?],
Sun’s HotSpotTM technology [?] and native compilers [?] are real effective solutions.

The use of Java in the domain of distributed computing is a reality as shown for
instance by the JavaGrande Forum [?]. The Java Remote Method Invocation frame-
work [?] allows components of distributed applications to communicate via method
invocation. The communication complexity is hidden to the programmer by frag-
mented objects [?]**** TODO : VERIFY ****. Nevertheless, Java RMI does
not provide efficient mechanisms for distributed computing in terms of performance
and design. In fact, it was mainly designed for client/server applications, not for large
distributed applications with many objects. Whereas asynchronous communication is
a standard paradigm in parallel programming using MPI [?] or PVM [?] to achieve
communication/calculus overlapping, it does not directly exist in standard Java2 RMI
specification. Reasons may be asynchronism is not well suited for remote method in-
vocation and exceptions handling is not well defined. The main reason is probably the
focus of Java on simple mechanisms.

Several projects try to improve the performance of RMI. For example Krishnaswamy
and al. [?, ?, ?] present a more efficient implementation of RMI. A reimplementation
of the serialization mechanism used by RMI is proposed by Philippsen and al. [?].

1Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. The author is independent of Sun Microsystems, Inc.

2Even if they can be implemented with threads; an asynchronous input/output Application Programming
Interface will not be available before the JDK v1.4.

4

Other works extend the language to provide distribution transparency or asyn-
chronous remote method invocation. JavaParty [?], for example, adds the keyword
remote to the language to declare remote objects. A compiler generates additional
classes to transparently distribute objects which are accessed using standard method
invocation. The Falkner and al. project described in [?] extends the language with the
keyword asynch to declare methods of the remote object that are called in an asyn-
chronous way. A re-implementation of stubs and skeletons and the use of Futures [?]
allow developers to deal with asynchronous calls.

Research is also carried out around the automatic generation of remote objects.
HORB [?] for instance, is a Java ORB (Object Request Broker) which does not need
a declarative interface to create remote objects. Any object can be compiled by a
dedicated compiler to become remote. Asynchronous remote method invocation is
based on method naming convention. For example, a foo() method of a remote
object must be renamed by foo_Asynch() and clients must use foo_Request()
and foo_Receive() to achieve the asynchronous call to foo().

As seen above, RMI, like other comparable projects rely on static declaration of
properties that say ’remotely accessible’, ’asynchronously accessible’ or both. JACOb
focuses on dynamic aspect : any object can be made remote at any time, and any
method can be invoked asynchronously. Using keywords is not a solution since it is a
static solution.

This document presents JACOb, the framework for dynamic asynchronous remote
method invocation. It is based on the concept of active container introduced in sec-
tion 3. The dynamic generation of remote objects it provides is describe in section 4.
Its asynchronous remote method invocation mechanism is described in section 6. Con-
clusion, future work and research directions are presented in section 8.1.

5

Chapter 2

Prerequisite

The reader must be familiar with Java, reflection, and with the RAMI package which
provides reflective asynchronous method invocation. **** TODO : REFERENCES

6

Chapter 3

The active container concept

An active container is a container of objects which can generate activities over its stored
objects. Currently, it has only a limited set of methods which are :

void put(Object key,
Object object)

: insert an object in the container;

void remove(Object key) : remove an object from the container;

Object get(Object key) : get a copy of an object from the con-
tainer;

void call(Object key,
String method,
Object[] args,
MethodResult result)

: call a method of an object contained
in the active container.

Almost all methods are standard container’s method and are self-explanatory. The
call() method is a special method which generate the activity. It invokes the speci-
fied method on the object mapped to key in the active container. The method is spec-
ified as a string which is why reflection is necessary. This leads to many problems
which are solved by the notion of transparency provided by the RAMI package****
TODO : REFERENCE ****.

The simplicity of this concept eases application modeling and its genericity makes
it possible to express sophisticated tasks such as code migration. The program 3.0.1
shows how object migration can be expressed.

The JACOb (Java Active Container of Objects) framework is an implementation of
the concept of active containers in Java. It adds two other functionalities that are not
explicitly specified above :

� objects can become remote dynamically;

� remote method invocation of stored objects1 is asynchronous.

1A stored object is an object contained in an active container.

7

Program 3.0.1 Active containers : migration

1 fromActiveContainer.call(key,
"stopActivity",
null,
null);

5 MyObject object =
(MyObject) fromActiveContainer.get(key);

fromActiveContainer.remove(key);
toActiveContainer.put(key, object);
toActiveContainer.call(key,

10 "restartActivity",
null,
null);

Migration of an object from the active container fromActiveContainer to the
active container toActiveContainer.

The next sections describe these two functionalities in details.

8

Chapter 4

Dynamic remote objects

4.1 Introduction

Distributed systems such as RMI or CORBA use the fragmented objects [?] paradigm****
TODO : VERIFY ****. We consider a remote object as composed of four parts ??:

the object part: it is the ’business code’ of the remote object;

the proxy part: it may hold local data, achieve computations locally, and forward
calls to its corresponding remote reference by encoding them into network pack-
ets (a stub is a special case of a proxy performing no local processing and reduced
to the communication function);

the skeleton part: it decodes incoming network packets into method invocations;

the server part: it listens to the network for incoming calls, and uses the skeleton part
to invoke the specified method.

When no ambiguity is possible, server and skeleton will be considered as a whole.
These parts are usually generated by a compiler. Most often, an interface must

be declared (IDL for Corba, java.rmi.Remote in RMI, keyword remote in JavaParty,
etc.) and implemented by remote objects. A compiler generates the proxy/skeleton pair
(idl compiler, rmic, HORBC, etc.) that hides the complexity of the communication.

For example, the rmic compiler generates both skeleton1 and stub classes. The stub
class implements the remote interface of the object part which inherits the server part
(usually UnicastRemoteObject). Any remote method call is sent by the stub to
the remote server part which calls the skeleton part and invokes the effective method as
illustrated by figure 4.2.

Each of the four distinct parts needed by an object to become remote is either :

1Since JDK 1.2, skeletons are not necessary. Using reflection, the server part decodes the method invoca-
tion itself. The command rmic -v1.2 generates classes for RMI v1.2 protocol without skeleton classes.

9

client object

stub skeleton

res = stub.f();

reply(stub, tmp);

send(skeleton, "f");

Real method call

tmp = object.f();

res = object.f();

Virtual method call

Real network message

Figure 4.1: Stub and skeleton in Java-RMI
Java Remote Method Invocation uses the stub/skeleton paradigm.

� inherited2 by the object like the server part (UnicastRemoteObject) of
RMI objects,

� generated by a compiler like the proxy and skeleton parts of RMI objects created
by rmic3.

These solutions are static. To provide dynamic aspect, a solution based on remote
active container is proposed.

4.2 Dynamic Aspect

In JACOb, active containers can be remotely accessible. In such a case, an active con-
tainer is in some sens the server and the skeleton part of any of the objects it contains.
The remote reference of the contained object is composed of its key and the proxy
of the active container. The call() method of the active container uses reflection
to encode/decode method invocation and can be considered as the replacement of the
skeleton part as illustrated in figure 4.3.

Hence, to be remotely accessible, an object has to be in an active container. Two
mechanisms can be used for this purpose. An object may be instantiated locally and

2Composition is used instead of inheritance by Corba’s components.
3RMI v1.1.

10

client object

stub skeleton

res = stub.f();

reply(stub, tmp);

send(skeleton, "f");

Real method call

tmp = object.f();

res = object.f();

Virtual method call

Real network message

Figure 4.2: Stub and skeleton in Java-RMI
Java Remote Method Invocation uses the stub/skeleton paradigm.

JVM

activeContainer.call(k1, m, args, null); k1

k2

k3

k4

Active
container

JVM

proxy

Active
container’s

Figure 4.3: Remote active container
A remote active container is the server and skeleton part of the objects it contains.

11

inserted in an active container with its remote put()method. Since the object must be
transfered through the network, it has to be serializable. An object may be instantiated
directly in the active container with a local put() call. In this case, the object does
not have to be serializable.

Any object can then be remote, and the declaration of interfaces is not needed for
remote objects in JACOb. Moreover, remote objects do not have to inherit a special
class. Any Java class can be remote and still be a subclass of any class. This is very
important for building object systems using design patterns [?]. If a remote class had
to be a subclass of a specific class, it could not be a subclass of a pattern since Java
does not support multiple inheritance.

JACOb neither requires compilation nor the generation of classes designed for re-
mote access and which cannot be used in any other context. JACOb also provides
separation of concerns : programmers do not have to worry about the remote feature of
their objects.

4.3 Resource sharing

As described in 4.2, a remote object usually has an associated server with an open
listening socket, one or more input/output streams, one or more dedicated threads, etc.
So, remote objects consume a lot of resources even if they probably do not need all
of them at the same time. Since real applications may hold a large number of remote
objects, they are limited on some operating systems by one or more of the maximum
number of : threads4 per process, threads in the system, file descriptors5 per process,
file descriptors in the system.

JACOb provides a mechanism to share such resources since an active container is
the server and the skeleton part of any of the objects it contains. The remote reference
of a stored object is the pair

���������
	���
����������
���������������

where
��������	���
�������������� �

is the active container that contains the object and
�!� �

is its
associated key. To communicate with a stored object, a client acquires a local refer-
ence on the proxy of the active container and invokes its call() method as shown
figure 4.4.

Active container’s objects share sockets and communication threads allowing as
many number of remote objects as the available memory makes it possible. Thus,
JACOb is said to be resource friendly.

4Threads limitation occurs if the Java Virtual Machine is not implemented on user space threads library
such as the green threads. Since JDK v1.3, Sun delivers a virtual machine based on the HotSpot technology
which does not support green threads. Moreover, almost all native threads implementations of the Java
Virtual Machine make use of kernel threads.

5Since sockets use file descriptors.

12

JVM

activeContainer.call(k1, m, args, null); k1

k2

k3

k4

Active
container

JVM

proxy

Active
container’s

Figure 4.4: Communication with a stored object
A client uses an active container’s proxy and a key to communicate with a stored object.

4.4 Summary

This chapter has presented the dynamic feature of JACOb which is based on remote
active containers : any object can be accessed remotely through the call() method
of a remote active container without any apriori declaration or any compilation. JACOb
is resource friendly since active container is the shared skeleton and server part of its
stored objects.

It must be pointed out that even if RMI remote objects share their communication
resources (threads and sockets), the high resources consumption problem of RMI ob-
jects still remains in the deployment of distributed applications. In fact, when an RMI
object is running, its resources cannot be shared by a newly created RMI object easily.
Two solutions can be used. The currently running remote object is stopped and a new
main is coded to instantiate both the old object and the new remote object. This so-
lution is not well suited for high disponibility object server used currently in the real
world. The other solution which avoids the last problem is the creation of another Java
Virtual Machine process which runs the newly created object. This solution rises the
high resources consumption problem since each process may allocate its own pool of
threads and sockets. JACOb offers a simpler mechanism : newly created object can
be inserted in the already running active container allowing its resources to be shared.
Thus, only one active container has to run on a given machine to provide distributed
application deployment.

13

Chapter 5

Dealing with the JACOb
package

5.1 The ActiveMap interface
While JACOb is based on the active containers concept described in chapter 3, it is
written in Java which provides the java.util.Map class - an inactive container in-
terface ! Hence, JACOb extends this interface in the ActiveMap class which defines
the method call() :

public interface ActiveMap extends Map {
void call(Object key, FutureServer future);
}

The call() method is not exactly the one presented in the active container con-
cept 3. The FutureServer class contains - among other things - the method to
invoke, the arguments of the method and an equivalent to the MethodResult class.
See the section 6 for details.

The ActiveMap interface specifies the behaviour of a JACOb active container.
Since ActiveMap inherits java.util.Map, everywhere you used a Map, you may
use an ActiveMap instead providing another way to deal with your stored objects.

5.2 Dealing with remote objects

5.2.1 Terminology

We must concentrate on terms used in the following :

a stored object: is an object which resides in an active map wether this map is remote
or not;

a remote object : is any object (stored or not) accessible remotely;

a remote stored object : is a stored object accessible remotely through a remote ac-
tive map;

14

a direct remote object : is an object accessible remotely by another mechanism than
a remote active map.

Note that a stored object can be remote and direct remote at the same time. We will
see this feature in 7.

5.2.2 Direct remote objects : the Remote interface

Direct remote objects must have a defined behaviour to be used correctly. For exam-
ple, exceptions must be handled in a uniform manner. Hence, JACOb provides the
Remote interface which defines the behaviour of a direct remote object. In fact, only
the behaviour of exception handling is specified in this time, but, if other specifications
must be defined for direct remote objects in the future, only one class would have to be
redesigned.

5.2.3 Direct remote active map

JACOb provides some direct remote implementations of the ActiveMap interface.
When you’ve instantiated such an implementation, you may consider the instance as
an ActiveMap object hiding the remote feature of your object. Thus, local active
map and remote active map can be interchanged easing distributed objects applications
deployment.

5.2.4 Manipulation of stored object: the StoredObjectReference

The JACOb reference of a stored object is a pair

� ��������	�� � ��� � �����!�

and is wrapped by the StoredObjectReference class. Instead of using the active
map reference to deal with a stored object, an instance of this class represents the pair
(activeMap, key). Hence, removing a stored object do not require the key and
the active map anymore: if sor is an instance of the StoredObjectReference
class, doing sor.remove() remove the object mapped to the key sor.getKey()
in the active map sor.getActiveMap().

Notice that an StoredObjectReference can be invalid if the keysor.getKey()
is not mapped in the active map sor.getActiveMap(). The state of a stored ob-
ject reference is returned by sor.isValid(). If it returns false, the only action that
can be done is invoking its method put() which insert an object into the active map
and mapped it to the key.

Moreover, the StoredObjectReference implements the AsynchronousReference
of the RAMI package which defines the call() method providing reflective asyn-
chronous (remote) method invocation. Hence, the call()method of the ActiveMap
interface is not aimed to be used by the end-user of a stored object.

15

Chapter 6

Reflective asynchronous
(remote) method invocation

6.1 Introduction

Method invocation is not very adapted to asynchronous communication since a method
call often returns a result. The caller thread may wait the availability of the result.
Therefore, many frameworks modify the method invocation paradigm to suite asyn-
chronism. For example, HORB [?] provides asynchronism with a send/receive model
while Java Messaging Service [?] proposes a publish/subscribe model. While both
models are more adapted to asynchronous communication, any existing code has to be
rewritten - when possible - to use it. For example, if a synchronous communication is
transformed for efficiency reasons into an asynchronous one, the programmer has to
introduce the send/receive instructions on both client and server side1. Such a change
may have a really bad impact on the design of the application.

The use of an inner anonymous inlined thread such as

new Thread(new Runnable() {
public void run() {

// invoke the desired
// method asynchronously
f();

}
}).start();

is not a good design solution: a thread object must be instantiated and result polling
must be implemented.

Several projects try to provide an asynchronous method invocation schema in a
more or less transparent way, using so called future objects. Most of them are static and
dedicated to asynchronous remote method invocation. For example, the asynchronous
remote method invocation mechanism described by Falkner and al. [?] needs a compi-
lation phase to generate stubs dedicated to the asynchronous paradigm.

1Since objects use message passing for their communication, the name client is used for the object that
invokes the method of another object named the server. This definition extends naturally to remote objects.

16

JACOb uses the RAMI package to provide reflective asynchronous method invo-
cation. Since an active container may be remote, then JACOb may provide reflective
asynchronous remote method invocation.

6.2 Server-side reflective asynchronous (remote) method
invocation

Communication with the stored objects of an active map is achieved through the method
call() of the StoredObjectReference2. Since StoredObjectReference
implements the AsynchronousReference of the RAMI package, asynchronism
is provided within this method: the method specified in it is executed in a dedicated
thread. The call() method is defined as follow :

public FutureClient call(Method method, Object[] args);

where

method: is the method to invoke asynchronously;

args:represents the arguments of the specified method;

FutureClient: is the class the method returned an instance of to handle the asyn-
chronous (remote) method invocation.

The Figure 6.1 illustrates the StoredObjectReference’s call() mecha-
nism and the use of the FutureClient instance returned. (1) A thread (callerThread)
is running, preparing a reflective asynchronous (remote) method invocation. It does the
call() invocation (2) which returns a FutureClient object (future) (3). The
(remote) active map generates activity by allocating a thread (calleeThread) (4)
the other client thread continues its execution (4’). Periodically, the callerThread
may test the availability of the result (5 and 6).When the called method terminates,
the active map updates the future object (7). The next run by the callerThread
is a positive availability test (8). It then gets the returned result (9) and continues its
execution (10).

The FutureClient object is a future object which provides result polling, result
blocking and callee thread control.

Notice that asynchronism is done on the server-side instead of client-side. The
reader may wonder why this aspect is specified here since it may be considered as
a server implementation problem which may be masked to the client. The original-
ity of this concept is the possibility to access the callee remote thread through our
FutureClient future object. The caller of a remote method invocation has a direct
remote reference to the thread which runs its method allowing controls such as inter-
rupting, joining, and so on. Thus, interrupting an asynchronous (remote) method invo-
cation is naturally done with a call to future.getCalleeThread().interrupt().

2In fact, the call() method of the active map is used, but end-users are strongly discouraged to use it

17

Container
Active

otherKey

otherObject

key

object

(7)

(5)

(6)

callerThread
(1)

(4’)

(10)

(9)

(8)

object.methodName(args);

calleeThread
(4)

future.setResult(res, exception);

future.isResultAvailable();

result = future.getResult();

future = sor.call(method, args);

future
(3)

(2)

Figure 6.1: The call() asynchronous mechanism
JACOb active map’s call() method is asynchronous.

6.3 Client-side reflective asynchronous (remote) method
invocation

The previous section describes the server-side reflective asynchronous (remote) mech-
anism based on the method call() of the active map3. When active maps are local, it
is a sufficient mechanism for asynchronous communication between objects. But when
they are remote, since the remote access point to an active map is its local proxy, any
call to a method of the proxy(put(), get(), remove() or call()) requires that a
message is sent to the corresponding active map over the network. This leads the caller
to be blocked during the sending phase4.

Hence, when a client invokes call(), three threads are involved in the process :

the client caller thread that invokes the call() method of the proxy of the remote
active map;

the server thread of the remote active map which polls the network and creates the
callee thread;

the remote active map’s allocated callee thread which runs the requested method of
the stored object.

So the active map’s call()method is not fully asynchronous. It creates the callee
thread, but does not avoid the caller thread to be blocked when invoking call() on
the proxy which is sending the message to its related active map through the network.
This method is partially asynchronous since the caller thread is blocked during the
sending phase, but is not blocked during the execution of the called method.

3Or on the call() method of the StoredObjectReference class which is the same thing since
the latter uses the former

4Since asynchronous input/output is only available in the new jdk 1.4

18

Using client-side asynchronism provides a solution where the caller thread is never
blocked during a remote method invocation. In this section we shortly describe this
mechanism which uses the RAMI package.

As we have seen in section 6.2, the RAMI package contains the AsynchronousReference
interface which defines the method call():

public FutureClient call(Method method, Object[] args);

An asynchronous reference on an object provides reflective asynchronous method
invocation on this object through the call() method. Adopting the following nota-
tion :

O : is a standard reference on a Java object,

AR(O) is an asynchronous reference on the object O.

Usually, implementation of the AsynchronousReference interface, provides
client-side reflective asynchronous method invocation. The exception is the StoredObjectReference
class which implements the AsynchronousReference in a server-side manner as
described in section 6.2.

Consider now a usual client-side reflective asynchronous method invocation imple-
mentation. If activeMap is an active map remote proxy, then AR(activeMap)
is an asynchronous reference on activeMap. This asynchronous reference provides
client-side reflective asynchronous method invocation for all the methods defined in
the ActiveMap interface (call() and all of its subclasses (java.util.Map).
For example, you may invoke the method Collection values() (defined in
the java.util.Map interface asynchronously. If the map contains a lot of stored
objects, this method may take some time to return the result, thus invoking it asyn-
chronously allows the caller thread to invoke it as soon as possible while continuing its
execution before really getting the result as shown in the program ??.

To deal with stored objects manipulation, the StoredObjectReference should
be used and the following notation is adopted:

SOR() is an invalid stored object reference;

SOR(O) is a stored object reference on the object O. This implies that O is mapped
to key in activeMapwhere key and activeMap are wrapped by the stored
object reference i.e. the stored object reference is a valid reference.

SOR(activeMap, key) is a stored object reference which wrapped the pair activeMap,
key; this stored object reference may be invalid.

Consider sor an instance of the StoredObjectReferencewrapping the pair
(activeMap, key). The methods sor.put(),sor.remove() and sor.get()
are all synchronous whereas sor.call() is server-side asynchronous.

Hence, if you want to insert an object asynchronously, you use the RAMI package
as usual: making an asynchronous reference on an invalid stored object reference. So,
you have an AR(SOR()) object. Then, doing an asynchronous insertion of an instance
of a MyObject class consists of the lines (ommiting exception handling which is not
yet the focus point):

19

// Gets an invalid stored object reference: ’key’ is not already mapped into
// ’activeMap’.
StoredObjectReference sor = StoredObjectReference.getInstance(activeMap, key);

// Gets an asynchronous reference on ’sor’
AsynchronousReference ar = // depends on implementation

// RAMI provides a better way to do that : see the notion of transparency in
// the RAMI documentation
Method putMethod = StoredObjectReference.class.getMethod("put",
new Class[]{Object.class});

MyObject object = new MyObject();
// Asynchronous invocation of ’sor.put(object)’
FutureClient future = ar.call(put, object);

// This part is done concurrently to the invocation of ’sor.put(object)’
doSomethingElse();

// Wait for the termination of the asynchronous insertion
future.waitUntilResultAvailable();

// ’object’ had been inserted, we can continue.
continue();

Three distinct threads are involved in a client-side asynchronous remote call:

the client caller thread that invokes the client-side asynchronous method;

the client sender thread that runs the blocking method (here it is a method of a remote
active map proxy5);

the active map’s server thread that replies to incoming requests.

The client caller thread should know the status of its request as run by the sender
thread : request still not processed, request being processed or request processed.

Having an AR(SOR(O)) provides asynchronous manipulation (put(), get(),
remove()) of stored object. But what about the call() method which is already
server-side asynchronous ?

The client-side asynchronous mechanism provided by AR(SOR(O)) extends the
server-side asynchronous call() method to full asynchronism. One more thread is
involved in full asynchronous remote method invocation : the active map’s allocated
callee thread that runs the method specified in the call() method. Thus, the client
caller thread may control both the client sender thread and the active map’s callee
thread. For example, the caller may ensure the message has been sent by the client
sender thread even if the callee thread is not created yet. This way, both sides of
asynchronism (client-side and server-side) may be controled by any client.

To invoke fully asynchronosly the method f() of stored object O referenced by a
stored object reference SOR, you must have a client-side asynchronous reference on
the server-side asynchronous refernce SOR(O): hence, an AR(SOR(O)). Then, the
following lines:

// Gets a valid stored object reference: ’key’ is already mapped into
// ’activeMap’ to a stored object
StoredObjectReference sor = StoredObjectReference.getInstance(activeMap,

5Or a method of an instance of the class StoredObjectReference which uses the methods of a
remote active map proxy

20

key);

// Gets an asynchronous reference on ’sor’
AsynchronousReference ar = // depends on implementation

Method fMethod = MyObject.class.getMethod("f",
new Class[0]);

Method callMethod = StoredObjectReference.class.getMethod("call",
new
Class[]{Method.class,

Object[].class});

// Full asynchronous invocation of ’f()’ Client-side asynchronous invocation of
// ’sor.call("f", new Object[0])’
FutureClient future = ar.call(callMethod,

new Object[]{fMethod, new Object[0]});

// This part is done concurrently to the invocation of ’sor.call("f", new
// Object[0])’
doSomethingElse();

// Wait for the termination of the client-side asynchronous method invocation
// It returns another ’FutureClient’ object representing the server-side
// invocation of ’f()’
future = (FutureClient) future.waitForResult();

MyResult result = (MyResult) future.waitForResult();

// Use the result of the invocation of ’f()’
continue(result);

Writing full asynchronous remote method invocation is really inconvenient. Do-
ing imbricated call() is non natural and error prone. Fortunately, RAMI provides
chained asynchronism which solve this problem. An AsynchronousReferencePair
transform a pair of asynchronous reference into an asynchronous reference: if you have
an AR(AR(O)) asynchronous reference, then applying an AsynchronousReferencePair
noted ARP gives ARP(AR(AR(O))) and can be considered as an AR(O). Since a
stored object reference is an asynchronous reference, i.e. an SOR can be considered as
an AR, having an AR(SOR(O)) can be given to an AsynchronousReferencePair
to have an ARP(AR(SOR(O))) which gives an AR(O). The following lines shows
how to do this:

// Gets a valid stored object reference: ’key’ is already mapped into
// ’activeMap’ to a stored object ’O’ : ’SOR(O)’
StoredObjectReference sor = StoredObjectReference.getInstance(activeMap,
key);

// Gets an asynchronous reference on ’sor’ : ’AR(SOR(O))’
AsynchronousReference ar = // depends on implementation

// Gets an asynchronous reference pair on ’ar’ : ’ARP(AR(SOR(O))) -> AR(O)’
AsynchronousReferencePair arp = // depends on implementation

// RAMI provides a better way to do that : see the notion of transparency in
// the RAMI documentation
Method fMethod = MyObject.class.getMethod("f",

new Class[0]);

// Full asynchronous invocation of ’f()’
FutureClient future = arp.call(f, new Object[0]});

21

// This part is done concurrently to the invocation of ’f()’
doSomethingElse();

// Wait for the termination of the fully asynchronous method invocation
MyResult result = (MyResult) future.waitForResult();

// Use the result of the invocation of ’f()’
continue(result);

For more details on the AsynchronousReferencePair functionnality, see
the RAMI documentation.

6.4 Exception handling

We consider two kinds of exceptions in a remote method invocation:

Remote method invocation exceptions are generated on the server side of the invo-
cation, in the remote active map by the specified method; thus, they are handled
in a per call basis as standard exceptions depending on the stored object’s meth-
ods : an exception thrown by a matrix product method may not be handled as an
exception thrown by a database query method;

others exceptions are exceptions which are not specific to the specified method; they
are handled in a generic manner. For example a network exception may result in
an attempt to contact an administrator.

JACOb provides two distinct mechanisms to handle both classes of exceptions.

Remote method invocation exceptions

These exceptions are generated on the server side, in a remote active map. Since this
class of exception is related to method invocation, the mechanism used to handle them
will be presented in the section ??.

Others exceptions

These exceptions are not specific to the specified method. Thus the caller may prefer
a general exception handler. For example, when an active map refuse a method invo-
cation (either, the server is down, or it may be overloaded, or for security reasons), the
action to do may be to interrupt the caller (which may be waiting on the result or not),
and to specify it to contact another active container. Sometimes, it may be useful to
ignore them ! Network related exceptions for example, are ignored by JavaParty [?]
(remote methods do not throw RemoteException as specified by RMI) because it
is specifically designed for clusters where network is considered reliable.

This class of exceptions is problematic in client-side asynchronism only. In our
framework, if the programmer uses only the server-side asynchronous call() method,
any exceptions, other than remote method invocation related exception, are handled by
the active container’s proxy. Methods of the proxy’s may throw exceptions and must
be enclosed in a standard try/catch statement.

22

Program 6.3.1 Asynchronous invocation of java.util.Map.values()

1 // Gets an activeMap (potentially remote)
ActiveMap activeMap = // depends on implementation

// Suppose ’useMap()’ insert many objects into ’activeMap’
5 useMap(activeMap);

// We must invoke ’activeMap.values()’ soon. Since ’activeMap’ contains many
// objects, the method will probably some non neglictable times so we may

10 // invoke this method asynchronously

// Gets an asynchronous reference on ’activeMap’
AsynchronousReference asynchronousReference = // depends on implementation

15 // Prepare the asynchronous method invocation.

// This can be done more easily : see the notion of transparency in the RAMI
// documentation
try{

20 Method valuesMethod = Map.class.getMethod("values", new Class[0]);
}catch(NoSuchMethodException e) {

e.printStackTrace();
System.exit(1); // Assertion !! (May use ’assert’ in jdk1.4)

}
25

// Invoke the method ’values()’ asynchronously.
FutureClient future = asynchronousReference.call(valuesMethod, new Object[0]);

// This part is done concurrently to the invocation of ’activeMap.value()’
30 doSomethingElse();

// We need the result now !
try{

Collection values = (Collection) future.waitForResult();
35 useValues(values);

}catch(Throwable t) {
// Since ’Map.values()’ do not declare any exception to be thrown, we may
// consider that if an exception occures during the asynchronous method
// invocation, it is a RuntimeException. This can be verified with the

40 // instanceof operator
if (!t instanceof RuntimeException) {

t.printStackTrace();
System.err.println("How a non RuntimeException " +

"instance had been thrown here ?");
45 System.exit(1); // Assertion !! (May use ’assert’ in jdk1.4)

}

handleRuntimeException(t);
}

An asynchronous reference on an active map allows the asynchronous invocation of its
values() method.

23

Chapter 7

Advanced techniques

7.1 Object caching

Caching of remote objects is a powerful mechanism that increases the performance of
systems that range from file systems to distributed shared memories. If there is locality
of access, caching a remote object at the client site can improve application perfor-
mance because methods invoked on the object can be executed locally. As mentionned
earlier, RMI does not provide such a functionality directly. Of course, a programmer
can develop its own stub which can do object caching. But again, this is a static mech-
anism. The programmer must create its objects with that concern in mind.

Caching of objects is straightforward to achieve in JACOb with the method get()
of active containers as illustrated in figure 7.1.

Any object may benefit from object caching in JACOb. Moreover, programmers do
not have to adapt their objects to use this service.

7.1.1 Security

**** TODO : Write something ! ****

7.2 Direct remote communication with stored objects
using a custom protocol

**** TODO : Write something ! ****

7.2.1 Just in time security

**** TODO : Write something ! ****

24

Active Container

Key

Object

Active Container

Key

Object

get(key);

Copy
Object’s

call(key, "method_1", ...)

call(key, "method_2", ...)

call(key, "method_3", ...)

call(key, "method_i", ...)

call(key, "method_n", ...)

n remote method invocation

1 remote method invocation

Client

Client

Thread

Thread

n local calls

Figure 7.1: Object caching
Benefits of object caching provided by the get() method of JACOb’s active contain-
ers.

25

7.3 Services

**** TODO : Write something ! ****

7.3.1 Monitoring

**** TODO : Write something ! ****

7.3.2 Persistence

**** TODO : Write something ! ****

7.3.3 Transaction

**** TODO : Write something ! ****

26

Chapter 8

Conclusion and perspectives

8.1 Conclusion

This document has presented JACOb a framework that provides asynchronous invo-
cation of dynamic remote object’s method. It focused on dynamic aspect by being
entirely based on the concept of active container. Remote objects in JACOb do not
have to implement a special interface or inherit a special class or even to be compiled.
Any object can become remote by being inserted into an active container. Any pub-
lic object’s method can be called in a fully-asynchronous way with full handling of
exceptions.

8.2 Perspectives

A remote implementation of the JACOb ActiveMap class has been implemented in a
straightforward manner with RMI. A new version based on a lower level protocol must
be provided for efficiency.

A CORBA version will be implemented soon. Next, an UDP version may be tried
as well as a TCP one. In fact, any JACOb is independent of the underlying proto-
col so any other protocol might be used such as BIP over Myrinet for high efficient
communication.

An implementation of a security service is currently implemented. Much more is
to be done such as persistence, transaction, naming, concurrency, messaging...

27

Bibliography

[1] Agent-Oriented Software Engineering. Handbook of Agent Technology.
AAAI/MIT Press, 2000.

[2] The javagrande homepage, January 2001.
http://www.javagrande.org/.

[3] Ken Arnold and James Gosling. The Java programming language. Addison-
Wesley, 1996.

[4] J. Chen and B. Leupen. Improving instruction locality with just-in-time code
layout. In USENIX Windows NT Workshop, pages 25–32, August 1997.

[5] M. Cierniak and W. Li. Just-in-time optimization for high-performance Java pro-
grams. In Concurrency, Pract. Exp. (UK), volume 9 of Java for Computational
Science and Engineering - Simulation and Modeling II, pages 1063–73, Las Ve-
gas, NV, June 21 1997.

[6] Katrina E. Kerry Falkner, Paul D. Coddington, and Michael J. Oudshoorn. Im-
plementing Asynchronous Remote Method Invocation in Java. Technical report,
Distributed High Performance Computing Group, July 1999.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns - Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.
ISBN : 0-201-63361-2.

[8] Al Geist, Adam Beguelin, Jack Dongarra, Jiang Weicheng, Robert Manchek, and
Vaidy Sunderan. PVM : Parallel Virtual Machine : A Users’ Guide and Tuto-
rial for Networked Parallel Computing. Scientific and Engineering Computation
Series. The MIT Press, janusz kowalik edition, 1994.

[9] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Fea-
tures of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[10] S. Hirano. HORB: Distributed Execution of Java Programs. In Proc. WWCA’97,
volume Vol. 1274 of LNCS, pages 29–42. Berlin, springer edition, 1997.
http://ring.etl.go.jp/openlab/horb/.

[11] Gosling James, Joy Bill, and Steele Guy. The Java Language Specification. Ad-
dison Wesley, 1996.

28

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Videira Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Springer-Verlad, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 1241 of LNCS.

[13] A. Krall. Efficient JavaVM just-in-time compilation. In International Conference
on Parallel Architectures and Compilation Techniques, pages 54–61, 1998.

[14] Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bomma-
iah, George Riley, Brad Topol, and Mustaque Ahamad. Efficient implementations
of Java Remote Method Invocation. In 4th USENIX Conference on ObjectOri-
ented Technologies and Systems (COOTS’98), 1998.

[15] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addi-
son Wesley, second edition, 1999.

[16] J. Maassen, R. Nieuwpoort, R. Veldema, H. Bal, and A. Plaat. An Efficient Im-
plementation of Java’s Remote Method Invocation. In ACM Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), July 1999.

[17] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Narzul, and Marc Shapiro.
Fragmented objects for distributed abstractions. In Advances in Distributed Sys-
tems. IEEE, 1992.

[18] Hans Meuer, Erich Strohmaier, Jack Dongarra, and D. Simon Horst. Top500
super computers, January 2001.
http://www.top500.org/.

[19] Christian Nester, Michael Pilippsen, and Bernhard Haumacher. A more efficient
RMI for Java. In Proceedings of Java Grande Conference, pages 152–157, San
Francisco, California, June 1999. ACM.

[20] Michael Philippsen and Bernard Haumacher. More efficient object serialization.
In Parallel and Distributed Processing, number 1586 in LNCS, pages 718–732,
San Juan, Puerto Rico, April 1999. International Workshop on Java for Parallel
and Distributed Computing.

[21] Michael Pilippsen and Matthias Zenger. Javaparty - transparent remote objects
in java. In Concurrency: practice and experience, volume 9, pages 1225–1242,
1997.

[22] Sun microsystems. Java Remote Method Invocation Specification, 1998.

[23] Sun microsystems. Java messaging services specifications.
http://java.sun.com/products/jms/, November 1999.

[24] Sun microsystems. The Java HotSpot performance engine architecture. white
paper, April 1999.

[25] Tower Technology Corporation. Towerj - web server, January 2001.
http://www.towerj.com/.

29

[26] J. Udell. Componentware. BYTE, pp.46-56, May 1994. Bibliography 167.

[27] E Walker, R Floyd, and P Neves. Asynchronous remote operation execution
in distributed systems. In International Conference on Distributed Computing
Systems, number 10, pages 253–259, Paris, France, May/June 1990.

30

