
Programmer's
Guide

Version: 1.2
Last Updated: February 21, 2003

© 2003 MIIK, Ltd.

Contents

Contents...2
Introduction..3

About This Guide...3
New in This Version..3

Related Documents..3
About the JNIWrapper..4

Technical Advantages...4
New in This Release...5

Getting Started..6
System Requirements..6

Other Platforms...6
Package Contents..6

Configuring Software..7
Library JAR File..7
Native Code Library..7
License File...8

Using JNIWrapper..9
Libraries and Functions...9

Finding Libraries..9
Using DefaultLibraryLoader ..9
Loading Libraries..9
Getting Functions...10
Calling Conventions..10

Calling Conventions on Windows..10
Calling Conventions on Linux...11

Parameters..11
Primitive Types..11
Structures and Unions..11
Pointers...13

Function Pointers..13
Arrays...14

Controlling Memory Allocation for Arrays...15
Strings..16
Mapping Native Types to JNIWrapper Classes..16

Calling Functions..18
Callbacks...19
Multi-threading..20

Parameters..20
Functions..21
Callbacks...21

AWT Native Interface Support...22
Using JAWT Support...22
Accessing Native Controls Data..22
Getting HWND of a Window – an Example...23
JAWT Support in Different JDK Versions..23

Support...25
Reporting Problems..25
Troubleshooting...25

Where to Get New Version..26
Alphabetical Index..27

JNIWrapper Programmer's Guide 2

Introduction

In the few years since its first release, the Java™ programming language has
grown immensely to become a popular platform. Many developers working on
different platforms find their own advantages in using Java technology. One of
them is of course the “write once, run anywhere” ability, allowing to write the
software on one platform and run it on another.

Sometimes, however, Java programs have to interact with the native code.
This is well justified by such reasons as performance, lack of features in the
Java platform or legacy software interoperability. To solve this problem Java
Native Interface (JNI) was introduced in the Java platform allowing
programmers to write native code pieces and integrate them into their Java
programs. The main difficulty arising from such approach is that the native
code is completely disjoint from Java code in terms of browsing, debugging
and maintenance.

In this document we introduce JNIWrapper – the product that allows to
interface the native code retaining full control of the application on Java side
at any level.

About This Guide
This guide introduces JNIWrapper, reviews its design goals, concepts and
principles, provides the requirements for using JNIWrapper as well as
sufficient information you need to know before starting working with the
product.

This document covers all platform versions of JNIWrapper, and functions that
teat a particular platform in a specific way, or specific configuration settings
are marked accordingly.

New in This Version

New in this version (1.2) of the Programmer's Guide:

Added: “Function pointers” section

Added: “AWT Native Interface Support” section

Added: “Controlling Memory Allocation for Arrays” section

Updated: “Mapping Native Types to JNIWrapper Classes” table

Related Documents
The documents provided on the Documents page at the JNIWrapper site
(http://www.jniwrapper.com) are aimed to help in understanding and effective
usage of the JNIWrapper technology. Each JNIWrapper user should go through
the documentation in the following order:

Users should start with the current Programmer's Guide document
describing the ideas and basics of the proposed software.

JNIWrapper Programmer's Guide 3

Those who plan to develop their own software effectively should proceed
from this Guide to JNIWrapper Tutorial providing detailed step-by-step
instructions with useful code samples.

Each version of JNIWrapper is supplied with an updated Release Notes
document. Be sure to check the Release Notes before installing
JNIWrapper to receive the up-to-date version specific information.

You can also find useful information in the Frequently Asked Questions
document that we regularly update basing on the questions we get from
our users. The document can be accessed on-line at the JNIWrapper site.

About the JNIWrapper
Java™ is a very powerful platform, allowing programmers to develop the
state-of-the-art software. It is, however, designed to run on a variety of
different platforms and therefore does not encompass every feature of every
platform. Certain basic things like creating a symbolic link under Linux or
operating with registry items under Windows® are not supported in Java™.
Programmers willing to do this are forced to write a native library and classes,
interfacing with it, then debug the code using two different debuggers (Java-
and native-side). These are sometimes difficult and always very time-
consuming tasks. All of them can be avoided by using JNIWrapper – the Java
library for calling native library functions. With JNIWrapper you can
extensively use the potential of the underlying platform (like tray icons or
custom shape splash screen) with only a single native library, having full
control of the program flow on the Java side.

Technical Advantages

JNIWrapper has a number of technical advantages over the competition. Most
important of them are:

Minimum behind-the-scene operation. Users should always be able to
see and understand what is happening when working with the native-side
data. This helps both to develop and debug complex interactions between
Java and native code.

High performance. This has always been our priority. JNIWrapper has
been specially tuned for performance, especially in cases where large
amounts of data are involved in the interactions.

Automatic resource management.

• All resources allocated by JNIWrapper components are released auto-
matically when no longer required. Users can treat JNIWrapper variables
as usual object that can be picked by Java garbage collector.

• JNIWrapper objects are also safe with regard to finalizers: all resources
are guaranteed to be available during finalization.

Comprehensive native function invocation support. JNIWrapper
supports both stdcall and cdecl calling conventions and all complex C
types including structures and unions. Callbacks are fully supported with

JNIWrapper Programmer's Guide 4

any parameter and return types and both calling conventions. For
unexpected cases users can create their own types taking complete
control over parameter behavior.

The product is extensively used in the projects carried out by the company,
which ensures its efficiency, reliability, future support and improvement.

New in This Release

For detailed information about the changes in the current version be sure to
check the ReadMe.txt inside the JNIWrapper package. The JNIWrapper
changes history is also available on-line at
http://www.jniwrapper.com/whatsnew.jsp.

JNIWrapper Programmer's Guide 5

Getting Started

System Requirements
The following are general requirements for running JNIWrapper on the
following supported platform:

Windows

• OS: Windows 9x, Me, NT 4.0, 2000 and XP

• Java: Java 2 SDK/JRE 1.3.x and onward

Linux

• OS:

• Java: Java 2 SDK/JRE 1.4.x

There are no specific memory or other hardware requirements for developing
an application based on JNIWrapper.

Other Platforms

Support for other platforms like Mac OS X, HP-UX, and Solaris is planned for
the future.

Package Contents
JNIWrapper package consists of the following main files required for work:

Library JAR file – jniwrap.jar

Native code library

• for Windows – jniwrap.dll

• for Linux – libjniwrap.so

License file –

• for Windows – jniwrap.lic

• for Linux – jniwrap.lic

All the files have to be placed in the appropriate locations. Please see the
'Configuring Software' section for more details about the product installation
instructions. The package may also contain other files providing some useful
information for the user, for example the Readme.txt file.

JNIWrapper Programmer's Guide 6

Configuring Software

As was stated above, JNIWrapper consists of three main files required for the
software functioning: JAR file, native code library and the license file. The
following paragraphs describe where each file should be located. No other
configuration is required.

Library JAR File
The JNIWrapper JAR file should be located on the program class path. Due to
the limitations of the Java native library loading mechanism it is not
recommended to load JNIWrapper in custom class loaders unless you are sure
that it will be loaded in only one such class loader.

Library file can also be placed on the boot class path or in the extension
directory of Java runtime, but this is not required.

Native Code Library
The JNIWrapper native code library is loaded using the standard Java native
code loading mechanism. Therefore the native code library file cannot be
located inside a jar or some other package – it should always be a plain file on
the file system. There are no known problems with placing the native code
library file on a mapped drive or even using it from the network share using a
UNC path. Do not rename the library file or it will not be loaded.

Even though the native code library can be placed virtually anywhere, its
actual location should be determined taking into account that Java code
must find the library to load. It can be placed somewhere within the
program library search path (value of the java.library.path system
property, that is by default equal to the value of the system variable PATH
on Windows or LD_LIBRARY_PATH on Linux).

Alternatively, users can add a search path to the default library loader used
by JNIWrapper or even write a custom one that searches for the native code
in a predefined location. Using a default path may be preferable for
development and library loader as a much better way for distributing a
complete application.

Certain users may like to install the native code library into the directories on
the default system path, for example:

on Windows – the root of Windows installation or Windows\System32

on Linux – <java_home>/lib/i386 or <java_home>/jre/lib/i386

Note that this requires having adequate access rights on the Windows
NT/2000/XP and Linux systems. Installing the native code library using this
way may be convenient, but is not a required procedure.

JNIWrapper Programmer's Guide 7

License File
Placing the license file is very simple – it just has to be located in the same
directory as the native code library file. Do not rename the license file or it
will not be recognized.

You may appear to have several licenses for JNIWrapper for different
platforms supported. In this case you need to put all license key files as
described above but preventing the file name conflict. JNIWrapper accepts
multiple license files named like shown below:

• jniwrap.lic
• jniwrap.lic1
• jniwrap.lic2
• ...
• jniwrap.lic999

JNIWrapper Programmer's Guide 8

Using JNIWrapper

Libraries and Functions

Finding Libraries

Since JNIWrapper accesses native libraries by name, there has to be some
mechanism that finds an actual library file by its name. In JNIWrapper this is
achieved by using library loaders. Library loaders are responsible for finding
and loading a library given its name. Programmers can use the supplied
implementation of a path-based library loader or create their own.

The latter approach requires implementation of the
com.jniwrapper.LibraryLoader interface. This interface defines two
methods: findLibrary for finding a file containing the required library by
name, and loadLibrary for loading the library (by calling System.load), also
by name. Suppose you have implemented a library loader called
MyLibraryLoader. To make JNIWrapper look for the libraries using this loader
you can write something like this:

Library.setDefaultLibraryLoader(new MyLibraryLoader());

Remember that the default loader specified this way is also used for loading
the JNIWrapper native library.

Alternatively, you may use a custom loader to load a specific library only:
myLibrary.load(new MyLibraryLoader());

Using DefaultLibraryLoader

JNIWrapper comes with a convenient default implementation of the
LibraryLoader interface – DefaultLibraryLoader. It looks for the libraries in
a set of directories (path). The initial search path includes all directories from
the java.library.path system property.

New directories can be added to the search path using the addPath method.
DefaultLibraryLoader is a singleton and is also the one JNIWrapper uses by
default.

If using the default path with some additions is sufficient, then adding
directories to the search path is the only configuration needed. For example, if
native libraries (or the JNIWrapper native code) are to be looked for in the Bin
directory relative to the program working directory, the following line should
be added to the JNIWrapper initialization part of your program:

DefaultLibraryLoader.getInstance().addPath("Bin");

Loading Libraries

Loading libraries does not require special attention if only one library loader is
used, that is when the necessary library is found and loaded using the loader
set by the setDefaultLibraryLoader method (or an instance of the

JNIWrapper Programmer's Guide 9

DefaultLibraryLoader class which is the initial value of that property).

If a custom library loader should be used, an explicit call to the library load
method should be made before any function is loaded from that library.

Take a look at these examples. Using one library loader:
Library kernel32 = new Library("kernel32");
// Use kernel32 here

Using a custom library loader:
Library customLib = new Library("myCustomLib");
LibraryLoader myCustomLoader = new MyCustomLibraryLoader();
customLib.load(myCustomLoader);
// Use customLib here

Getting Functions

Functions are represented by the instances of com.jniwrapper.Function
class. A function is always a part of some library and therefore cannot be
instantiated on its own. To get a function from a library the getFunction
should be used. For example:

Function getLastError = kernel32.getFunction("GetLastError");

Please remember that some compilers may mangle function names to include
argument types or sizes. This version of JNIWrapper performs search only by
the exact name, not by mangled names; therefore if you need to invoke a
function with such a name you should specify the full mangled name. For
example:

Function myFunc = myLibrary.getFunction("_myFunc@4");

Most libraries however export nice unmangled names. You can find out an
exported function name by using tools such as dumpbin or Dependency
Checker.

Calling Conventions

There are two widespread calling conventions: cdecl used in most C/C++
programs, and stdcall used, for example, in Pascal. Calling convention is a
function property since a library can export functions that use different calling
conventions. Use your library documentation to find out which calling
convention is used by the functions you are interested in.

Calling Conventions on Windows

Most Windows® API functions use the stdcall calling convention. This is the
default convention used by JNIWrapper. If the function you need to call uses a
different calling convention you should set it in the function object. For
example:

cdeclFunction.setCallingConvention(
 Function.CDECL_CALLING_CONVENTION);

JNIWrapper Programmer's Guide 10

Calling Conventions on Linux

The absolute majority of libraries on Linux use the cdecl calling convention.
This is the default calling convention on Linux.

Parameters
In JNIWrapper parameters are passed to and from the native code using
objects of the com.jniwrapper.Parameter type. These objects behave like
variables of different types depending on the actual subclass used. All
parameters are mutable, which means that users may change any value at
any time. All parameters can be shared across function calls, i.e. one can pass
the result of one function call directly to another without creating a new
object. All parameters do their best in implementing a reasonable version of
the toString method.

Primitive Types

JNIWrapper provides parameter classes for all the primitive types available in
the native (C/C++) program: signed and unsigned integers of different sizes,
floating point values, single-byte and wide characters, etc. Related types
usually have a common superclass or implement a common interface. All
simple types have a no-argument constructor that initializes a parameter to
the default value (usually zero or equivalent), a constructor with the initial
value and a copying constructor. They also have appropriately typed getValue
and setValue methods. Take a look at the example of using the DoubleFloat
parameter:

DoubleFloat d1 = new DoubleFloat(1.2345);
DoubleFloat d2 = new DoubleFloat(d1);
d1.setValue(9.876);
System.out.println(d2.getValue());

Structures and Unions

JNIWrapper supports C-like structures and unions. Like in C, the structure and
union definitions are similar. Both provide a constructor that takes an array of
parameters defining the structure or union contents. If you want to create a
reusable Java class for a structure or unions, you can use a protected no-
argument constructor and initialize the contents by calling the init method.
This method is provided for convenience because class fields are initialized
after the superclass constructor is invoked and therefore cannot be used as
constructor arguments. Structure and union member values are accessed by
directly querying the parameters specified in constructor for their values. For
example:

/*
Structure definition in C:
struct SomeStruct
{
 int a;
 char b;
 double c;

JNIWrapper Programmer's Guide 11

}
*/
struct = new Structure(new Parameter[] {intField, charField,

doubleField});
intField.setValue(10); // set struct.a value to 10
// invoke some code that modifies the structure here
System.out.println(doubleField); // prints new value of
struct.c

Structures can be defined with different alignments. Structure alignment is
specified in the constructor (or in the call to the init method). Here is the
example of a reusable structure definition which supports different
alignments:

private static class TestStruct extends Structure {
 public Int _int = new Int();
 public Int8 _int8 = new Int8();
 public Int16 _int16 = new Int16();
 public Int32 _int32 = new Int32();
 public Int64 _int64 = new Int64();
 public LongInt _long = new LongInt();

 public TestStruct() {
 init(new Parameter[] {
 _int, _int8, _int16, _int32, _int64, _long
 });
 }

 public TestStruct(short alignment) {
 init(new Parameter[] {
 _int, _int8, _int16, _int32, _int64, _long
 }, alignment);
 }
}

Unlike C, in JNIWrapper user has to define the active union member explicitly
using the setActiveMember method. However, this can be done after the
function call where union data was modified. Take a look at the following
examples of union usage:

union = new Union(new Parameter[] {intField, charField,
stringField, structField});
union.setActiveMember(stringField);
stringField.setValue(STRING_VALUE);
func1.invoke(result, union);
// ...
func2.invoke(union, (Parameter[])null);
union.setActiveMember(structField, true);
assertEquals(X_VALUE, structField.getX());

Structures and unions can consist of any simple or complex members that are
JNIWrapper parameters. In the above example one of the union members is a
structure.

JNIWrapper Programmer's Guide 12

Pointers

JNIWrapper supports C-like pointers to all the defined types. Users create a
pointer by instantiating the com.jniwrapper.Pointer class. Pointers should
always refer to some object. For example:

Pointer pInt = new Pointer(new Int());

A pointer automatically allocates memory for its referenced object; it handles
reads and writes, requiring the referenced object to read or write its data
when the pointer itself is read or written. Thus, after any native function call
all the parameters are updated even if they are referenced by several nested
pointers. For example:

Int value = new Int();
Pointer ppInt = new Pointer(new Pointer(value));

// invoke func(int **i) passing ppInt as a parameter
func.invoke(null, ppInt);
System.out.println(value) // value is updated!

In cases where the referenced object is read-only or write-only, one may use
the Pointer.Const or Pointer.OutOnly types, respectively. Note, however,
that using these classes cannot enforce the read-only or write-only policy on
the native function which may still access the data inappropriately. It is
recommended that these classes are only used for performance
improvements.

JNIWrapper supports pointers that reference undefined values (void* in C)
through the Pointer.Void class. Use this class when you do not care about
the actual referenced object and do not have to allocate the memory a pointer
points to. For example, if you need a constant (HWND)-1 you can use the
following construct:

Pointer.Void HWND_TOPMOST = new Pointer.Void(-1);

Pointer.Void is not a pointer: it does not have a referenced object and it is
not assignable to and from any other kind of pointer. The name of the type
only reflects the fact that this parameter always has the same size as
platform-dependent pointer does.

Function Pointers

Another capability of the Pointer.Void class is that it can also be used to
represent a function pointer and to call the function it points to. The
asFunction() method returns a function object that can be used to invoke a
function that a given pointer points to.

Consider the following example. A native library provides a function to install
a callback that returns an old callback function pointer:

typedef void (*PCallbackType)(int);
PCallbackType installCallback(PCallbackType);

One may install a hook to monitor callback invocation as follows:
// Field declaration

JNIWrapper Programmer's Guide 13

Pointer.Void myOldCallback;
// ...
// Callback installation code
installCallback.invoke(myOldCallback, new HookCallback());

and later inside the HookCallback class

protected void callback() {
 // do some hook stuff
 myOldCallback.asFunction().invoke(null, intParam);
}

Limited pointer arithmetics is supported through the ArithmeticalPointer
class. This pointer also manages one referenced object, but also
accommodates an offset from its initial value. Such pointer can be used for
passing to the functions such as strtok that offset a pointer to iterate through
data. Note that the referenced object still cannot be changed and is always
read and written at its initial offset.

Arrays

JNIWrapper supports two types of arrays: primitive arrays, that are made of
primitive values such as integers or characters and complex arrays, that can
consist of the elements of any implemented type. The former can be basically
implemented using the latter, but for the primitive types primitive arrays are
more efficient.

Arrays are represented by the instance of com.jniwrapper.PrimitiveArray
and com.jniwrapper.ComplexArray for the primitive and complex arrays,
respectively. The main difference between the two types of arrays is that a
primitive array is a plain data block that contains sequential data of a given
type, while a complex array is a sequential storage of elements of any
complexity that are all read and written whenever an array is read or written,
respectively. This means that an array of pointers cannot be implemented as a
primitive array because the referenced objects will not be written or read
when needed.

The simplest method of creating an array is using a constructor specifying a
sample parameter and array size. Note, that array member type should be
correctly cloneable. For example, to create an array of bytes you can use the
following construct:

PrimitiveArray val = new PrimitiveArray(new Int8(), 256);

Another method of creating an array is using a Java array of parameters that
should constitute it. This is achieved by using a constructor taking a
Parameter[] argument. Both primitive and complex arrays can be created this
way. Here is an example of creating an array of pointers to integers:

Parameter[] members = new Parameter[10];
for(int i = 0; i < 10; i++) {
 members[i] = new Pointer(new Int(i));
}
ComplexArray result = new ComplexArray(members);

JNIWrapper Programmer's Guide 14

When using arrays one should always remember that sometimes arrays are
stored or passed to functions not as plain data, but as a pointer to the array
contents. The most typical case is when an array argument or member is
defined as a pointer to type (e.g. double*). In this case the actual passed
parameter should be a Pointer. For example:

/*
C declaration:
struct s
{
 int size;
 double *data;
}
*/
Int intMember = new Int(50);
PrimitiveArray arrayMember = new
PrimitiveArray(DoubleFloat.class, 50);
Structure s = new Structure(new Parameter[] {intMember,
 new Pointer(arrayMember)});

If in the previous example the second member is declared as double
data[50] (predefined size array), the pointer wrapper should not be used.

Controlling Memory Allocation for Arrays

In most cases the array sizes are known or may be computed before a call is
made. There are cases, however, when deciding array size before a function
call is not possible or not efficient. In these cases the array that is passed by
pointer is either resized to accommodate all the data or allocated altogether
by the callee. In the first case the caller is usually still responsible for memory
deallocation while in the second the memory management is most likely the
responsibility of the callee. The common thing in both cases is that the called
function returns the new size of the array as one of the results of the call.
JNIWrapper supports both ways of required memory management by using
the special array pointers – ResizingPointer and ExternalArrayPointer.
Each of these pointers does not read the array it points at after the function
call. The array should be read after the call is complete using the
readArray(int count) method of the pointer. For example:

PrimitiveArray myArray = new PrimitiveArray(Int8.class,
length);

Int16 len = new Int16(length);
ExternalArrayPointer pArray = new ResizingPointer(myArray);
Function func = getFunction("myFunction");
func.invoke(null, pArray, new Pointer(len));

length = (short)len.getValue();
pArray.readArray(length);
// use myArray here

The rule of thumb for choosing the correct pointer is: if you want JNIWrapper
to manage the memory allocated for the array – choose ResizingPointer, if

JNIWrapper Programmer's Guide 15

you do not need the memory management for the array memory – choose
ExternalArrayPointer.

Strings

Strings in JNIWrapper are character arrays of a predefined size with
convenience methods for getting and setting string values as zero terminated
strings. JNIWrapper supports two types of strings: single-byte, or ANSI
strings, and Unicode strings.

All strings are defined with a maximum length that a string value can occupy.
It is illegal to set the string parameter value to a value longer than its
maximum length. Passing string argument to a function that writes more data
than is allocated may result in an error just as it does for the native programs.
On the other hand, strings are safe in a way that the data is parsed until the
terminating zero (of the appropriate length) is found or maximum string
length is reached. Therefore even a bad string without a terminating zero will
not cause memory access failures in your program. Here are the examples of
string usage:

AnsiString s = new AnsiString("Hello, World!");
WideString s2 = new WideString(20);
s2.setValue("Goodbye, World!");

Similarly to arrays, strings in the native code can be both pointers to string
data and character arrays themselves. When using strings as structure
members, use the same guidelines to determine whether a pointer wrapper
should be used. When passing strings as function arguments, however, strings
are always passed as pointers and JNIWrapper does pointer wrapping
automatically. You should remember though that wrapping is just a
convenience feature and passing a char** will require creating a new
Pointer(new Pointer(new AnsiString())).

Mapping Native Types to JNIWrapper Classes

Below is given the mappings table for most commonly used data types along
with some comments.

Native Type
(C/C++)

JNIWrapper
type Comments

Boolean Types
bool Bool

Character types
char Char
wchar_t WideChar

JNIWrapper Programmer's Guide 16

Native Type
(C/C++)

JNIWrapper
type Comments

Integer types
short ShortInt
int Int

long LongInt

The unsigned types are represented by
prepending U to the type name, e.g. unsigned
int (or unsigned) type is UInt.

There are also types for predefined-width
integers: Int8, Int16, Int32 and Int64, they
also have the unsigned variants.

Floating-point types
float SingleFloat
double DoubleFloat

long double LongDouble Long double is the same as double (8-byte
floating-point value) on win32 platform.

Pointer types (not arrays)
void * Pointer.Void
char * AnsiString

wchar_t * WideString

To create a pointer to a value (variable) of a
known type use Pointer class. For example:
int *i; is
Pointer i = new Pointer(new Int());

Use Pointer.Const if the referenced value is
not modified by the calling function, this
includes modifications of anything that is
referenced by that value.

Use Pointer.OutOnly if the referenced value
is not read by the calling function.

Function pointers can be void * if the
referenced value is not of interest to the
program or a subclass of the Callback if the
pointer should be to the user-provided
callback function.

Arrays
Arrays are represented by types PrimitiveArray and ComplexArray
parametrized by parameters that represent the actual type. For example:
int i[10];
is
PrimitiveArray i = new PrimitiveArray(Int.class, 10);

The difference between primitive and complex array types is that
PrimitiveArray can be only of primitive types (int, char, float) and not of
arrays, pointers, structures, etc. ComplexArray has no restriction on its
element type.

Sometimes arrays can be specified as pointers in function signature, for
example: void foo(int *arg); but if the actual value is a pointer to some
number of integers - use array as a parameter.

JNIWrapper Programmer's Guide 17

Native Type
(C/C++)

JNIWrapper
type Comments

Structures and unions
struct Structure
union Union

Function pointers
To create an object callable from the native code use the Callback class.

To call a function returned from the native code use the method asFunction
of the Pointer.Void class.

Windows API includes many data types which are not listed here (e.g.
DWORD, HANDLE), if you need to use one of such types use Windows-specific
documentation such as MSDN to find out the actual C type that corresponds to
it (e.g. LPSTR corresponds to char*) and use the relevant JNIWrapper type for
the argument. You can also check the on-line 'Windows Data Types' table
available at http://www.jniwrapper.com/wintypes.jsp.

Calling Functions
Functions are called using the invoke method of the Function class. The
arguments and return value are specified using variables of the Parameter
type. There are several overloaded versions of the invoke method, but the
idea and argument structure is similar: the first argument is always a holder
for the return value and the rest are arguments in the order they appear in
the function declaration. When a function is called, all passed parameters are
passed to it and then the returned value is stored in its placeholder. It is
allowed to pass null instead of the return value parameter, in which case it
will be ignored, but it is allowed for primitive types only. Doing this when the
return value is not of a primitive type may result in an error, because memory
must be allocated by the function caller if the function return value is big and
there is no way to allocate appropriate structure automatically without
knowing the actual return value type. There are no restrictions on the
argument or return value types as long as they are what a function expects.

Calling convention must be set before the function is first called, failure to do
so will result in an error. Here is a complete example of calling a function:

Function sprintf =
 new Library("msvcrt").getFunction("sprintf");
sprintf.setCallingConvention(
 Function.CDECL_CALLING_CONVENTION);
AnsiString result_buffer = new AnsiString();
sprintf.invoke(
 null,
 result_buffer,
 new AnsiString("Hello, %s!"),
 new AnsiString("World"));

JNIWrapper Programmer's Guide 18

System.out.println("result = " + result_buffer.getValue());
//Output: result = Hello, World!

This example shows that there is no problem with calling functions even with
variable argument number.

JNIWrapper checks that stack is left in a consistent state after a function is
invoked, and handles most of the failures by throwing a Java exception. All
exceptions descend from com.jniwrapper.FunctionExecutionException.

Function class provides a shortcut to call a function from a library without
creating Library and Function instances – the call method. To use it, write
the following:

Function.call("user32.dll",
 "MessageBeep", retVal, new UInt(1));

 Function.call("/lib/libc.so.6",
 printf", null, new AnsiString("Hello, World!\n"));

This will load a library using the default loader, lookup a function and invoke it
using the default calling convention. It is not recommended that this method
is used when your program makes a lot of native function calls, because it is
more resource intensive. However, it is perfectly fine to use it in simple cases
like getting the current directory.

Callbacks
Callback is a user-defined function that is called by the library code at the
appropriate time. Callbacks can have arguments and return a value.
JNIWrapper supports callbacks with any kind of arguments and return values,
as well as stdcall and cdecl calling conventions. Callbacks are represented
by subclasses of the com.jniwrapper.Callback class.

Passing callback as an argument is no different from passing any other value
– you just have to put an instance of the Callback class as the
corresponding argument. For example:

final class EnumWindowsProc extends Callback
// ...
EnumWindowsProc enumWindowsProc = new EnumWindowsProc();
Function.call("user32.dll", "EnumWindows", retVal,
enumWindowsProc, new Int32(57));

class MyComparator extends Callback
// ...
Function.call("/lib/libc.so.6", "qsort", null,
 dataPointer, new Int(size), new Int(memberLen),
 new MyComparator());

When a callback is no longer needed, user should explicitly free the resources
associated with it by invoking its dispose method. This is the only case in

JNIWrapper Programmer's Guide 19

JNIWrapper where resources are to be explicitly freed, because some types of
the callback objects may have no references from the code and still be active,
for example a window procedure callback instance may be created once when
the window class is registered and remain active during the entire program
life-cycle.

To implement a callback user has to subclass a Callback class implementing
the callback abstract method . The callback arguments and return value are
specified in the constructor (by calling either superclass constructor with
parameters or init method). The order of parameters is the same as for the
invoke method of the class Function: first goes the return value, and then
the arguments. Calling convention should also be set in the constructor if it is
different from the default one.

When a callback method is invoked, argument parameters contain the values
of the passed arguments; after a callback method completes, the value of
the return value parameter is returned to the caller. Here is an example of a
callback that takes an integer argument and returns its value incremented by
one:

/*
C callback declaration:
int callback(int);
*/
private static class IncIntCallback extends Callback {
 private Int _arg = new Int();
 private Int _result = new Int();

 public IncIntCallback() {
 init(new Parameter[] {_arg}, _result);
 }

 public void callback() {
 _result.setValue(_arg.getValue() + 1);
 }
}

Multi-threading
JNIWrapper was designed with threading in mind and is already successfully
used in a multi-threaded environment. The following sections describe thread
safety of JNIWrapper components.

Parameters

Parameters in JNIWrapper are not synchronized, because synchronizing at this
level is very inefficient, and performance was a high priority goal in
JNIWrapper development. Therefore, the access to parameter data should be
enclosed in synchronization blocks if there is a possibility for more than one
thread to access the data at a time. If you have only one parameter that is
shared between threads you can synchronize on that objects monitor:

Int32 sharedInt = new Int32();

JNIWrapper Programmer's Guide 20

// ...
// First thread
synchronized(sharedInt) {
 someFunction.invoke(sharedInt);
}
//...
// Second thread
synchronized(sharedInt) {
 if (sharedInt.getValue() == 10)
 System.out.println("Value is set to 10");

Functions

Function invocation in JNIWrapper is completely thread-safe. If the called
function is thread-safe, any number of threads may invoke it concurrently at
any time. No synchronization is required and/or performed, and calls are
executed fully concurrently as if invoking simple Java methods.

Callbacks

In this version callbacks are not thread-safe and not reentrant.

JNIWrapper Programmer's Guide 21

AWT Native Interface Support

Java™ includes the cross-platform standard windowing library called Abstract
Window Toolkit(AWT). One of the design principles of the AWT was to include
only the features that can be implemented on all platforms targeted for
Java™. This imposed some limitations on the windowing interface features. To
help users access the native controls that stand behind the AWT the AWT
native interface (JAWT) was introduced. JNIWrapper also supports this
interface so that users do not need to write native code to access the JAWT
features.

Using JAWT Support
On the native side all the JAWT functionality can be accessed through several
structures defined in the include/jawt.h file in the JDK directory. The root
structure – JAWT – is available from the function GetAWT. JNIWrapper provides
the class com.jniwrapper.util.JAWT that implements all the functionality
available through the JAWT structure. The classes JAWT_DrawingSurface and
JAWT_DrawingSurfaceInfo correspond to the structures with the same names
in the jawt.h and provide the same functionality.

Accessing Native Controls Data
The most common use of the JAWT interface is to get a handle of the native
control that corresponds to the given component. This data is returned in the
platform-dependent structure pointed to by the platformInfo member of the
jawt_DrawingSurfaceInfo structure. The contents of this structure are
defined in the jawt_md.h file in the include/<platform>/ directory of the
JDK installation. The correct structure has to be passed to the constructor of
the JAWT_DrawingSurfaceInfo class. A sample structure for Win32 is shown
below:

public class Win32DSI extends Structure
{
 private Pointer.Void _handle = new Pointer.Void();
 private Pointer.Void _hdc = new Pointer.Void();
 private Pointer.Void _hpalette = new Pointer.Void();

 public Win32DSI()
 {
 init(new Parameter[]{_handle, _hdc, _hpalette}, (short)
8);
 }

 /**
 * Returns target component handle (either window or bitmap
handle).
 */
 public Pointer.Void getHandle()

JNIWrapper Programmer's Guide 22

 {
 return _handle;
 }

 /**
 * Retruns DC handle. This handle should be used for
drawing instead of handles returned
 * from the <code>GetDC</code> or <code>BeginPaint</code>.
 */
 public Pointer.Void getHdc()
 {
 return _hdc;
 }

 /**
 * Returns palette handle.
 */
 public Pointer.Void getHpalette()
 {
 return _hpalette;
 }
}

Platform-dependent data structures are currently not included in the main
JNIWrapper distribution.

Getting HWND of a Window – an Example
Below is the example code snippet that gets a Win32 window handle of an
AWT window. It is very similar to the C-code required to do the same thing.

JAWT_DrawingSurface ds = JAWT.getDrawingSurface(window);
ds.lock();
Win32DSI win32DSI = new Win32DSI();
JAWT_DrawingSurfaceInfo dsi = new
 JAWT_DrawingSurfaceInfo(win32DSI);
Pointer pDsi = new Pointer(dsi);
ds.getDrawingSurfaceInfo(pDsi);
int result = (int) win32DSI.getHandle().getValue();
ds.freeDrawingSurfaceInfo(pDsi);
ds.unlock();
JAWT.freeDrawingSurface(ds);
return result;

JAWT Support in Different JDK Versions
When programming using JAWT interface it should be kept in mind that JAWT
is a relatively new technology. It was introduced only in JDK 1.3 with limited
functionality, has had many improvements to the JDK version 1.4, and JAWT
is intended to completely replace such native-related functions as
sun.awt.windows.WToolkit.getNativeWindowHandleFromComponent. For the
JDK 1.3 one should expect very limited support for JAWT. For example the
argument of the getDrawingSurface method can be only a java.awt.Canvas.
JDK 1.4 introduced new functions such as AWT locking and unlocking as well

JNIWrapper Programmer's Guide 23

as extended the capabilities of the existing ones.

JNIWrapper Programmer's Guide 24

Support

If you encounter any problems or have questions regarding our product,
please check the documents listed below. The answer to your question may
already be listed there:

Installation instructions;

User Guide;

Frequently Asked Questions (FAQ) page at the following address:

http://www.jniwrapper.com/support.jsp.

If none of the above sources contains the required information, please e-mail
us at: support@jniwrapper.com.

Reporting Problems
Should you experience any problem or find any bugs, please submit the issue
to us using the special report form on the JNIWrapper site at the following
address:

http://www.jniwrapper.com/support_form.jsp

The form will help you provide all the necessary information.

Troubleshooting
For finding a solution on your problem please visit the Troubleshooting page
on our site at the following address:

http://www.jniwrapper.com/tshoot.jsp

This page is regularly updated using information from the support requests.

If you don't find a solution please e-mail us at support@jniwrapper.com or
report the problem as described in previous section.

JNIWrapper Programmer's Guide 25

Where to Get New Version

To obtain the latest version of JNIWrapper and to receive up-to-date
information please visit: http://www.jniwrapper.com

JNIWrapper Programmer's Guide 26

Alphabetical Index

A
arrays 14-16

C
callback 4, 19-21
calling conventions 4, 10, 18-20
calling conventions

cdecl 4, 10, 18, 19
stdcall 4, 10, 19

F
functions 4, 9, 10, 14, 15, 18, 21

I
installation 7

J
JAWT 22, 23

L

library loader 7, 9, 10
license 6-9

P
parameters 11-14, 18, 20
performance 3, 4, 13, 20
pointer 13-16, 18
primitive type 11, 14, 18

S
strings 16
strings

ANSI 16, 18
unicode 16

structure 4, 11, 12, 15, 16, 18

T
tutorial 3

U
union 4, 11, 12

JNIWrapper Programmer's Guide 27

