agena »>

A Programming Language

Primner and Reference
for Version 0.22.1

by Alexander Walz
May 31, 2009

AGENA Copyright 2006-2009 by Alexander Walz. All rights reserved.
Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

Agena is licensed under the terms of the MIT license reproduced below. This means
that Agena is free software and can be used for both academic and commercial
purposes at absolutely no cost.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notfices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in inifial caps or all caps.

Contact: In case you find bugs, errors in this manual, have proposals, or questions
regarding Agena, please contact the author af; agena.infoat-online. de

The latest release of Agena may be found af http://agena.sourceforge.net.

agena >> 3

Credits

Chapter 7: Standard Library documentation
Large portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto lerusalimschy, Luiz Henrique de Figueiredo, Waldemar
Celes. Used by kind permission.

case of statement
The original code was written by Andreas Falkenhahn and posted to the Lua
mailing list on 01 Sep 2004. In Agena, the functionality has been extended to
check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on 12 Septemier 2005.

globals base library function
The original Lua and C code for globals has been written by David Manura for
Lua 5.1 in 2008 and published on www.lua.org. Because of crashes with library C
functions passed fo globals, the C source has been patched so that in Agena,
C functions are no longer checked.

md, cd, and rd functions in the os library
These functions are based on code taken from the "lposix.c” file of the POSIX
library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.x.

No automatic auto-conversion of strings 1o numbers
was inspired by Thomas Reuben's no_auto conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix (k', 'm)

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

4 Contents

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

agena >> 5

Table of Contents

1 INTrOAUCHON .. 11
1T FEATUIES it 11
1.2 Features in Detail ... i 11
T 3 HIS OMY Lt e 13

2 Instaling and RUNNING AQENA ..., 17
2.1 SOl ot 17
2.2 LINUX ottt 17
2. 3 WM OW S ottt 18
2.4 OS/2 Warp 4 and eComMSIatioN ... 18
2.5 AQena INHAlSAHON ... 18

S OV IV W 23
3.1 INPUE CONVENTIONS i 23
3.2 GEetiNg fAMIIAr . 23
3.3 GO BT S Lttt 25

4 DAta & OPEratiONS ... 29
4.1 Names, Keywords, and TOKENS ... vttt 29
(@]] T 1 30
4,3 ENUM IO ON it 31
A DI ON it 32
i S Y o (501 =0 [1 T 32
4.6 A NMIEIC L e 33
4,6, 1T NUMDEIS i i 33
4.6.2 ArthmetiC OPEIatONS oottt 34
4.6.3 Increment aNd DeCIEMIENT 1. it 35
4.6.4 Mathematical CoONSIANTS ..t e e e e 36
4.6.5 Complex MAtn .o 36
11197 T 37
4.8 BOOIEAN EXPIESSIONS o\ttt ittt ittt ettt 41
/B o | @] (<Y 42
R Y £ (@ Y1 43
4,9, 2 DI ONAN S ittt 46
4.9.3 Table, Set and Sequence OPEratOrS o.vv i 47
4.9.4 TADIE FUNCHONS o\ttt s 50
4.9.5TADIE REfEIENCES ...\ i 50
6 1= £ 51
AT SEOUENCES ottt 53
4,12 More on the create statement 56
I T = [- 56
O) 1= 1Y/ @1 58

D GOt . 61
DT CONAI I ONS vttt 61
B T i StatEmMENTt o 61
Lo T I) @ = (] (] 62
5.1.3 CASE STAtEMENT L. 63
D2 L0 S vttt 63

5. 2.1 WhIlE- OO S ittt 63

6 Contents

Lo T (@] 121 T 1) 1 64
5.2.3 for/in LOOPS fOr TADIES ...\ttt e 66
5.2.4 for/in LOOPS fOr SEQUENCES .\ttt ittt ittt e 67
5.2.5 for/in LOOPS fOr STHNGS .+ .ot 67
5.2.6 fOr/iN LOOPS fOr SETS 1\ttt e 68
5.2.7 fOI/WhIIE LOOIS '+ vttt 68
5.2.8 LOOP INtemUDION oo 69
O PIOQIAMIMING . 73
6.1 PrOCEAUIES i 73
6.2 LOCAl VANADIES v i 74
6.3 GlobAl VaNADIES 75
6.4 Changing Parameter VAIuEsovviii e 76
6.5 OpHoNAl ATGUMIENTS .t 76
6.6 Passing Options in ANy Order ... 78
6.7 Type Checking & EmrorHaNdling ... 78
6.8 MUIDIE RETUINS . e 80
6.9 Shortcut Procedure Definitiono e 81
6.10 User-Defined Procedure TYPES ...t 81
6.11 SCOPING RUIES .t 82
6.12 LOOPS IN PrOCEAUIES ... i 83
6. 13 PACKAGES .t 84
6.13.1 Wrting @ New PACKAQEoiii 84
6.13.2 The WIth FUNCHON .ot e e 85
6. 14 Remembertables 86
6.14.1 Standard Rememiber Tables ... 87
6.14.2 Read-Only RememberTables ...t 88
6.14.3 Functions for RememiberTables ...t 89
6.15 Overloading Operators with Metamethods ... Q0
6.16 Extending built-in FUNCHONS ... 94
O. 17 FIle O i i e @5
6.17.1 Reading Text Filesot @5
6.17.2WrtiNG Text FIles ... v 95
7Standard LIbranies ... 99
7.1 BASIC FUNCHONS ot e Q9
7.2 Coroutine ManipUIOTON .. 118
7.3 MOAUIES ot 119
7.4 StiNG MANIPUIAHON ..o 122
7.4.1 Kernel Operators and Basic Library Functions ..., 122
7.4.2The strings LiIorarny ... 124
7.5 Table ManipUIOTON . 133
7.5, 1 Kernel OpeIOtOrS ottt 133
7.5, 2 1ADIES LIOrArY i 135
7.6 SeT MANiPUIATON vt e 138
7.7 Sequence ManipUIOTON ... e 140
7.8 Mathematical FUNCHIONS ... e 143
7.8. 1 Kernel OperOtOrS ottt 143
7.8, 2 MO LOrany o 144

7.9 Input and Output FACIIIHIES ... 151

agena >> 7

7.10 binio - Binary File Package ... 156
7.11 Operating System FACIliieso 159
7.12The Debug Library ... 165
7.3 Utils - UTIHIES o 169
7. 14 Stats - STATSTICS L v 171
7.15 calc - CalCUIuS PACKAQE ... vt 172
7.161inalg - Linear Algebra Package ... 174
7.17 Clock - CIOCK PACKAQGE ..ot v 180
8 Agena Database System ... 185
Q@ C APIFUNCHONS ... 197
AP NI e 217
F N B @ 07T (0] (0] £ 217
A2 MetamMETNOAS ... 217
A3 SYStemM VaNADIES ... 218
Ad Command LINE USOQE ...ttt 219
A4.1 Using the -8 OpHON ..ot e 219
A4.2 Using the internal args TabIe 220
A4.3 Running a Script and then entering interactive Mode 221
A4.4 RuUNNIiNG SCHptS IN UNIX .o 221
A4.5 Command Line SWITChES 221

A5 Define your own Printing Rules for Structures ... 222

Contents

agena >>

Chapter One

Introduction

10

1 Agena

agena >> 11

1 Infroduction

1.1 Features

Agena is an easy-to-learn procedural programming language suited for everyday
usage. It has been implemented as an interpreter and can be used in scientific,
educational, linguistic, and many other applications.

It combines features of Lua 5, Algol 60, Algol 68, Maple, ABC, SQL, ANSI C, and
Sinclair ZX Spectrum BASIC.

While Agena's syntax looks like Algol 68, its implementation is based on the original
Lua 5.1 sources created by Roberto lerusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes.

Agena supports all of the common functionality found in imperative languages:

e Qassignments,
* |oops,

e conditions,

e procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

* high-speed processing of complex data structures,

» fast string and mathematical operators,

* extended conditionals,

* abridged and extended syntax for loops,

* special variable increment, decrement and deletion statements,
e efficient recursion tfechniques,

* eaqsy-to-use package initialisation functions,

e and much more.

Like Lua, Agena is untyped and includes the following basic data structures:
numibers, strings, booleans, tables, and procedures. In addition to these types, it
also supports Cantor sets, sequences, paqirs, and complex values known from
mathematics. With all of these types, you can easily build fast applications.

1.2 Features in Detail

Agena offers various flow control facilities such as

* if/elif/else conditions,

* case of/else conditions similar to C's switch/case statements,

* s operator to return alternative values,

* numerical for/from/to/by loops with optional start, stop, and step values,
e combined numerical for/while loops,

» for/in loops over strings and complex data structures,

12

1 Agena

while and do/as loops similar fo Modula's while and repeat/until not() iterators,

a skip statement to prematurely trigger the next iteration of a loop,

a break statement to prematurely leave a loop,

fast and easy data type validation with the try/else statement and the opftional
double colon facility in parameter lists.

Data types provided are:

rational and complex numibers with extensions such as infinity and undefined,
strings,

booleans such as true, false, and fail,

the null value meaning 'nothing’,

multipurpose tables implemented as associative arrays to hold any kind of data,
taken from Luq,

Cantor sets as collections of unique items,

seguences, i.e. vectors, to internally store items in strict sequential order,

pairs to hold two values or pass arguments in any order to procedures,

threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built info the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

the << (args) -> expression >> syntax to easily define simple functions,
user-defined types for procedures to allow individual handling (the same feature
is available to the above mentioned tables, sets, sequences, and pairs),
remember tables for conducting recursion at high speed and at low memory
consumption,

the nargs system variable which holds the number of arguments actually
passed to a procedure,

metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Lua.

Some other features are:

functions to support fast text processing (see in, replace, lower, and upper
operators, as well as the functions in the strings and utils packages),

easy configuration of your personal environment via the Agena initialisation file,
an easy-to-use package system also providing a means to load a library and
define short names for all package procedures at a stroke (with function),

the binio package to easily write and read files in binary mode,

facility to store any data to a file and read it back later (save and read
functions),

undergraduate Calculus, Linear Algebra, and Statistics packages,

enumeration and multiple assignment,

the external switch to a numeric for loop to pass the last iteration value to its
surrounding block,

agena >> 13

* scope control via the scope/epocs keywords.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
fransformed 1o Agena operators to speed up execution of programs and thus have
been removed from the Lua packages. The Lua mathematical and string handling
packages have been tuned and extended with new functions.

Agena code is not compatible to Lua. lts C API, however, was left almost
unchanged and many new API functions have been added. As such, you can
intfegrate any C package you have already written for Lua without modifying its
code in 99.9 % of all cases.

1.3 History

| have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful attempt made on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 60, Algol 68, and ABC along with Maple and my various ideas on the
‘perfect” language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent. you will find Algol
68-style elements in most cases, but also ABC/SQL-like syntax for basic operations
with structures. The primary reason for this is that sometimes natural language
statements are better to reminisce. | have stopped bothering on this inconsistency
issue.

Agena has been designed on Windows 2000 and NT 4.0 using the MinGW GCC
compiler. Further programming has been done on a Sun Sparc Ultra 5 and a Sun
Blade 150 running Solaris 10 and on openSuSE Linux 10.3 to make the interpreter
work in UNIX environments.

14

1 Agena

agena >>

Chapter Two

Installing & Running Agena

16

2 Installing and Running Agena

agena >> 17

2 Installing and Running Agena

2.1 Solaris

In Solaris, put the gzipped Agena package into any directory. Assuming you want to
install the Sparc version, uncompress the package by entering:

> gzip -d agena-0.22.1-sol10-sparc-local.gz
Then install it with the Solaris package manager:

> pkgadd -d agena-0.22.1-s0l10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lust/agena . The Jusr/agena directory is called the “main Agena folder .

Make sure you have the ncurses and readline libraries installed. From the
command line type agena and press RETURN.

= Terminal

window Edit Options ﬂelp‘

> agena
ACEM& »> 0.14.0 Language Demonstrator as of April 09, 2009

ACEMA comes with no warranty, is subject to the MIT Ticence, and has mainly
been developed on Lua 5.1 sources.

See http:/ffagena. sourceforge. net for news and updates.

8127592 KBytes of physical R&M free.

¥

Image 1: Startup message in Solaris

The procedure for Solaris for x86 CPUs is the same. In Solaris, the package always
installs as SMCagena.

2.2 Linux
In Linux, put the Agena rom package into any directory and install it by typing:

> rpm -ihv agena-0.22.1-linux-i386.rpm

This installs the executable into the /fusr/local/bin folder and the rest of all files into
lust/agena . The /jusr/agena directory is called the “main Agena folder'. Note that
you must have the ncurses and readline libraries installed before.

From the command line, type agena and press RETURN.

18 2 Installing and Running Agena

2.3 Windows
Just execute the Windows installer, and choose the components you want to instaill.
Make sure you either let the installer automatically set the environment variable

called AGENAPATH containing the path to the main Agena folder (the default) or set
it later manually in the Windows Control Panel, via the “System™ icon.

You may start Agena either via the Explorer menu, or by typing agena in a shell.

2.4 OS/2 Warp 4 and eComéStation

In OS/2, create a folder called agena anywhere on your drive, change into this
directory and decompiress the agena.zip file preserving its subdirectory structure.

Now set the environment variable AGENAPATHN the config.sys file with a text editor.
For example, if you installed Agena into the folder c:\agena , enter the following line
into the config.sys file:

set AGENAPATH=c:/agena

Note the forward slash in the path and the environment variable name in capital
letters.

Also in config.sys , append the path to the agena folder to the PATHSystem variable,
so that the entry looks something like this:

PATH=C:\0S2;C:\OS2\MDOS;C:\;< other paths ... >;c:\ agena,

Just enter agena in an OS/2 shell to run the interpreter.

2.5 Agena Initiali sation
When you start Agena, the following actions are taken:

1. The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, efc.) are created so that these package procedures
become available to the user.

2. All global values are copied from the G table to ifs copy _origG, so that the
restart function can restore the original environment if invoked.

3. The system variable EnvAgenaPath pointing fo the main Agena folder is set by
either querying the environment variable AGENAPATH or - if not set - checking
whether the current working directory contains the string /agena , building the
path accordingly. In UNIX, if the path could not be determined as described
before, EnvAgenaPath is by default set to /usriagena , but in Windows there is
no such fallback. The variable is used extensively in the with and readlib

agena >> 19

functions. If it could not be set, these two functions will not work, but all others will.

4. The standard Agena library library.agn in the /agena/lio folder is loaded and
run. The library.agn file includes functions written in the Agena language that
complement the C libraries. If the standard Agena library does not exist, this step
is skipped without any errors.

5. An initialisation file - if present - called agena.ini residing in the /agenalib ~ folder
is loaded and run. As with library.agn , this file contains code written in the
Agena language that you may customise with pre-set variables, auxiliary
procedures, etc. that shall be available in every Agena session. If the
initialisation file does not exist, no error is issued, and the Agena session begins.

20

2 Installing and Running Agena

agena >>

21

Chapter Three

Overview

22

3 Overview

agena >> 23

3 Overview

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

3.1 Input Conventions
Any valid Agena code can be enfered at the console with or without a frailing
colon or semicolon:

e |f an expression is finished with a colon, it is evaluated and its value is printed at
the console.

* |f the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed.

You may opftionally insert one or more white spaces between operands in your
statements.

3.2 Getting familiar

Assume you would like to add the numbers T and 2 and show the result. Then type:

> 1+2:
3

If you want to store a value to a variable, type:

>c:=25;

Now the value 25 is stored to the name ¢, and you can refer to this number by the
name c in subbsequent calculations.

Assume that ¢ is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> 1.8*c + 32:

77

If you would like to compute the sum of 1 to 10, and assign the result to a variable
called r, input:

>r:=0;
> for i from 1 to 10 do
> ri=r+i

> od;

>
55

24 3 Overview

There are many functions available in various libraries. To compute the arc sine, use
the arcsin function in the math package;

> math.arcsin(1):
1.5707963267949

You can easily write your own functions, for example one called deg that converts
radians to degrees.

> deg = << (x) -> x * 180/ Pi >>;

To compute the value of the function at Pi/4, just input:
> deg(Pi/4):
45

Try one of the built-in standard operators. lower converts all letters from upper case

to lower case.

> lower(AGENA"):
agena

One of the types to hold structured values is the table, which can hold any kind of
data. Assume you would like to store the birthdays of your friends, enter:

> birthdays := ['Neo' ~ '1970/01/01', 'Trinity' ~' 1970/12/247;

Determine Neo's birthday:

> birthdays['Neo':
1970/01/01

You can add new entries into your table.
> birthdays['Morpheus'] := '1952/04/01"

Now print its current content:

> birthdays:

Morpheus ~ 1952/04/01
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

To delete entries, just type:

> birthdays['Morpheus'] := null

> birthdays:
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

The global variable ans always holds the result of the last statement you completed
with a colon.

agena >> 25

> ans:
Trinity ~ 1970/12/24
Neo ~ 1970/01/01

The console screen can be cleared in both the Win32 and UNIX versions by just
entering the keyword cls:

>cls

The restart statement resets Agena to its inifial state, i.e. clears all variables you
defined in a session.

> restart;

If you prefer another Agena prompt instead of the predefined one, assign:

> PROMPT :='Agena$"
Agena$

You may put this statement into the agena.ini file in the Agena lio folder, if you do
not want to change the prompt manually every fime you start Agena.

3.3 Comments

You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment

> a = 1; # a contains a number

A multi-ine comment, also called the "long comment’ is starled with the token
sequence #/ and ends with the closing /# token'.

> #/ this is a long comment,
> split over two lines /#

Now let us learn more about Agena.

' Multi-ine comments cannot begin in the very first line of a program file. Use a single comment
instead.

26

3 Overview

agena >>

27

Chapter Four

Data & Operations

28

4 Data

agena >> 29

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

Type Description

number any integral or rational numiber, plus undefined and infinity

string any fext

boolean booleans (e.g. frue, false, and fail)

null a value representing “nothing”

table a multipurpose structure storing numbers, strings, booleans, tables,
and any other data type

procedure | a predefined collection of one or more Agena statements

set the classical Cantor set storing numbers, strings, booleans, and all
other data types available

sequence | a vector storing numbers, strings, booleans, and all other data types
except null in sequential order

pair a pair of two values of any type

complex a complex number consisting of a real and an imaginary number

Table 1. Types

Tables, sets, sequences, and pairs are also called sfructures in this manual.

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called "variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case lefter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, so no declarations of variable
names are needed.

Valid names Invalid names
var lvar

_var 1
varl
_varln

1
ValueOne

valueTwo

Table 2: Examples for valid and invalid names

30 4 Data

The following keywords are reserved and cannot be used as names:

abs and arctan as assigned break by bye case cha r clear cls copy cos
dec delete dict do elif else end entier enum esa C even exp external
fail false fi filled finite for from gammaln glo bal if imag in

inc insert int intersect into is isnull join key s left In local lower
minus nargs not null od of or proc gsadd real re place restart return
right sadd seq shift si sign sin size skip split sqrt subset tan then to
trim true try type typeof union unique upper whi le xsubset

boolean complex lightuserdata number pair proced ure sequence set

string table thread userdata

The following symbols denote other tokens:

+_***/\%/\$#:<><:>:<>:::(){}[];:Z:@,...?\

4.2 Assignment

Values can be assigned to names in the following fashions:

name = value
name,;, name,, ..., namey .= value,, value,, ..., valuey
name;, hame,, ..., name; -> value

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement™, name; is set to value;, name; is assigned
value,, etc. In the third form, called the “short-cut multiple assignment statement”,
a single value is set to each name to the left of the -> operator.

First steps:
>a:=1,

> a.

1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value.

> a = exp(a):
2.718281828459

agena >> 31

Multiple assignments:

>a,bi=1,2

If the left-hand side contains more names than the number of values on the
right-hand side, then the excess names are set fo null.

>c,d=1

>c:
1

>d:
null

A short-cut multiple assignment statement:
> X,y ->exp(l);

> X.
2.718281828459

>y
2.718281828459

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, nhame, ... |
enum name; [, name, ... | from value

In the first form, name,, name,, etc. are enumerated starting with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the
from keyword.

> enum THREE, FOUR from 3

32 4 Data

> THREE:
3

> FOUR:
4

4.4 Deletion

You may delete the contenfs of one or more variables with one of the following
methods: Either use the clear command:

clear name; [, name,, ..., namex]

>a.=1,;
> clear a;
>a:

null

which also performs a garbage collection useful if large structures shall be removed
frorn memory, or set the variable to be deleted to null:

>b:=1;

> b :=null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them.

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

or
and

<><=>==<>

in subset xsubset union minus intersect

+ - split
* | % \ shift

not -(unary)
N k%

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (..), exponentiation (», **) and pair (:) operators are right
associative. All other binary operators are left associative.

agena >> 33

> 1+3*4:
13

> (1+3)*4:
16

4.6 Arithmetic

4.6.1 Numbers

In the “real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of it.

1
-20
0
+4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rafional values must always be entered with a minus sign, buf
positive numbers do not need to have a plus sign.

You may opftionally include one or more single quotes within a number to group
digits:

> 10'000'000:
10000000

You can altematively enter numbers in scientific notation using the “e” symbol.

> 1el10:
10000000000

> -le-4:
-0.0001

If a number ends with the letter 'K, M", "G, or ‘D", then the number is multiplied
with 1,024, 1,048,576 (= 1,024%), 1,073,741,824 (= 1,024%, or 12, respectively. If a
number ends with the letter 'k~ or "'m’, then the number is multiplied with 1,000 or
1,000,000, respectively.

> 2k:
2000

34 4 Data

> 1M:
1048576

> 12D:
144

If you use only real numbers in your programs, then Agena will calculate only in the
real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

4.6.2 Arithmetic Operations
Agena has the following arithmetical operators:

Operator | Operation Details / Example

+ Addition 1+2»3

- Subftraction 3-2»1

* Multiplication 2*3»6

/ Division 4/2»2

A Exponentiation with rational power | 243 » 8

*x Exponentiation with integer power | fasterthan ~,2*3»8

% Modulus 5%2»1

\ Integer division 5\2»2

shift Bitwise shift If the right-hand side is positive,

the bits are shiffed to the left
(multiplication with 2), else they
are shifted to the right (division
by 2).

Table 3. Arithmetic operators

Agena has a lot of mathematical functions both built info the kermel and also
available in the math, stats, linalg, and calc lioraries. Table 4 shows some of the
mMost common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure?.

Unary operators® like In, exp, etc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(x) Sine (x in radians) Kemel |sin(0) »0

Ccos(X) Cosine (x in radians) Kemel |cos(0) »1

tan(x) Tangent (x in radians) Kemel |tan(l) » 1.557407..
arcsin(x) Arc sine (x in radians) math | math.arcsin(0) » 0

2 Check the with function which provides an easy way fo define short names for package
procedures.
% See Appendix Al for a list of all unary operators.

agena >> 35
Procedure Operation Library | Example and result
Qarccos(x) Arc cosine (x in radians) math | math.arccos(0) »

1.570796....

arctan(x) Arc tangent (x in radians) | Kemel | arctan(Pi) » 1.262627..
sinh(x) Hyperbolic sine math | math.sinh(0) » 0
cosh(x) Hyperbolic cosine math | math.cosh(0) »1
tanh(x) Hyperbolic tangent math | math.tanh(0) » 0
abs(x) Absolute value of x Kemnel |abs(-1) »1
entier(x) Rounds x downwards to Kemnel | entier(2.9) » 2

the nearest integer entier(-2.9) » -3
even(x) Checks whether x is even | Kemel | even(2) » true
exp(x) Exponentiation & Kemel | exp(0) »1
gammain(x) | InT x Kernel | exp(gammain(3+1)) » 6
int(x) Rounds x to the nearest Kernel | int(2.9) » 2

infeger towards zero int(-2.9) » -2
In(x) Natural logarithm Kemnel | In(1) »0
log(x, b) Logarithm of x to the math | math.log(8, 2) » 3

base b
roundf(x, d) | Rounds the real value xto | math | math.roundf(

the d-th digit sgrt(2), 2) » 1.41
sign(x) Sign of x Kemnel |sign(-1) »-1
sart(x) Square root of x Kemel |sart(2) » 1.414213.
sadd([...]) Sum Kemel | sadd([1, 2, 3]) » 6
mean([...]) Arithmetic mean stats stats.mean([1, 2, 3]) » 2
median([...]) | Median stats | stats.median(

[1,2,3,4] » 25

Table 4: Common mathematical functions

4.6.3 Increment and Decrement

Instead of incrementing or decrementing a value, say

>a:=1;

by entering a statement like

>a=za+1:
2

you can use the inc and dec commands* which are also around 10% faster:

inc name [, value]
dec name [, value]

If value is omitted, name is increased or decreased by 1.

* Finishing an inc or dec statement with a colon instead of a semicolon does not work,

36 4 Data

4.6.4 Mathematical Constants

Agena features the following arithmetic constants:

Constant Meaning
degrees Factor 1/Pi* 180 fo convert radians to degrees
EnvEps Equals 1.4901161193847656e-08
Exp Constant e = exp(1) = 2.71828182845904523536
I Imaginary unit
infinity Infinity
Pi Constant pi = 3.1415926535897932384¢
radians Factor Pi/180 1o convert degrees to radians
undefined | An expression stating that it is undefined, e.9. a singularity

Table 5: Arithmetic constants

4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the ! constfructor or the
imaginary unit represented by the capital letter 1. Most of Agena's mathematical
operators and functions know how to handle complex numibers and will always
return a result that is in the complex domain.

>a:=111;
> b= 2+3%;

> a+b:
3+4%|

> a*b:
-1+5%|

The following operators work on rational numbers as well as complex values: +, -, *,
[, ™, *, = <> abs, arctan , cos, entier , exp, In, sign, sin, sgrt , tan , and unary
minus. With these operators, you can also mix numbers and complex numbers in

agena >> 37

expressions. You will find that most functions of the math package are also
applicable to complex values.

Complex values are of type complex.

4.7 Stings

Any text can be represented by including it in single or double quotes:

> 'This is a string":
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str :="l am a string.";
> str:
| am a string.

Strings can be of almost unlimited length. Strings can be concatenated, characters
or seguences of characters can be replaced by other ones, and there are various
other functions to work on strings.

Multiline-strings can be entered in two fashions: If you use single quotes, put a
bbackslash at the end of each line except the last one:

> str ;= "Two\
lines';

When using double quotes, backslashes are not needed:

> str:="Two
lines";

A string may contain no fext at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters between them:

>

You may obtain a specific character by passing a dollar sign and its position in
simple brackets right behind the string name. If you use a negative index n, then
the n-th character from the right end of the string is returned.

> str :='l am a string.";

> str$(1);
I

In general, parts of a string consisting of one or more consecutive characters can
e obtained with the substring notation.

38 4 Data

stringname$(start [, end])

You must at least pass the starting position of the substring. If only starf is given then
the single character at position start is retuned. If end is given too, then the
substring starting af position sfart up to and including position end is returned.

> str := 'string’

> str$(3):
r

> str$(3, 5):
rin

> str$(3, 3):
r

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str$(3, -1):
ring

> str$(3, -2):
rin

> str$(-3):
[

If you want to retfrieve only one single character from a string, you may also use the
faster indexing method:

stringname|[pos]

This returns the character in stringname that is at position pos. If you pass a negative
for pos, then the |pos|-th character from the right end of the string is returned.

> str := 'string’

> str[2]:
t

> str[-1]:
g

In Agena, a text can include any escape sequences known from ANSI C, e.g.:

* \n :inserts a new line,
e \t :inserts a tabulator
* \b : puts the cursor one position to the left but does not delete any characters.

agena >> 39

> 'l am a string.\nMe too.":
| am a string.
Me too.

> 'These are numbers: 1\t2\t3":
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon
Example with backspaces but without the colon.

If you want to put a single or double gquote into the string, put a backslash right in
front of it:

>'A quote: \'":
A quote: '

> "A quote: \"";
A quote: "

Likewise, a backslash is inserted by typing it twice.

Two or more strings can be concatenated with the .. operator:

> 'First string, ' .. 'second string, ' .. 'third s tring":
First string, second string, third string

Instead of putting single or double quotes around a fext, you may also use a back
quote in front of the text, but not at its end. The string then automatically ends with
one of the following tokens®:

<space>",~[1{}();:#'=?2& % $8\! A@<>|\r\n\t

This also allows UNIX-style filenames 1o be entered using this shor-cut method.

> “text:
text

> */proglang/agena/utils/utils.agn:
/proglang/agena/utils /utils.agn

Agena has basic operators useful for text processing:

Operator Return Function

sint number or null | Checks whether a substring s is included in
sting 1. If true, the position of the first
occurrence of s in t is returned; otherwise null
is refurned.

replace(s, p, 1) | string Replaces all patterns p in string s with substring
r. If pis not in s, then s is returned unchanged.

® For the current settings of your Agena version see bottom of the agncont.h file in the src directory of
the distribution.

40

4 Data

Operator Return Function

s split d table of strings | Splits a string into its words with d as the
delimiting character. The items are returned as
a seguence of strings.

size(s) number Returns the length of string s. If s is the empty
string, O is returned.

abs(s) number Retuns the numeric ASCII code of character
S.

char(n) string Retuns the character corresponding to the
given numeric ASCIl code n.

lower(s) string Converts a sting to lowercase. Westermn
European diacritics are recognised.

upper(s) string Converts a string to uppercase. Westemn
European diacritics are recognised.

frim(s) string Deletes leading and trailing spaces as well as
excess embedded spaces.

Table 6: String operators

Some examples:

> str ;= 'a string’;

The character s is at the third position:

>'s'in str:
3

Let us split a string into its components that are separated by white spaces:

> strosplit' "
seq(a, string)

str is eight characters long:

> size(str):

The ASCII code of the first character in str, Q, is:

> abs(str[1]):
97

franslated back to

> char(ans):
a

Put all characters in str to uppercase:

> upper(str):
A STRING

And now the reverse:

agena >> 41

> lower(ans):
a string

The replace functionality easily replaces all occurrences of a substring with another
one:

> replace(str, 'string’, 'text"):
a text

A string always is of type string.

> type(str):
string

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "booleans . Any
condition, e.g. a < b, results to one of these logical values. They are often used to
fell a program which statements fo execute and thus which statements not fo
execute.

Boolean expressions always result to the boolean values true or false. Boolean
expressions are created by:

* relafional operators (>, <, =, ==, <=, >=, <>),
* logical operators (and, or, not),

* logical names: true, false, fail, and null,

* in, subset, xsubset, and various functions.

Agena supports the following relational operators:

Operator | Description Example
< less than 1<2
> greater than 2>1
<= less than or equals 1<=2
>= greater than or equals 2>=1
= equals 1=1

. 17==[1
== strict equals for structures [1]: 1[]
<> not equals 1<>2

Table 7: Relational operators

42 4 Data

Logical operators are:

Operator | Description Examples
and Both operands must evaluate to true so | rue and true » true
. false and false » false
that the boolean expression results fo true and false » false
frue. Otherwise the result is false. false and true » false
or At least one of the operands must true or true » true
true or false » true
evaluate to true so that the boolean false or true » true

expression results to true. If neither of the | false or false » false
operands is frue, the expression is false.

not Turns a frue expression to false and vice | nottrue » false
versa not false » true

Table 8: Logical operators

As expected, you can assign boolean expressions 1o names

>cond =1<2:
true

>cond:=1<2o0orl1>2and1=1:
true

or use them in if statements.

In many situations, the null value can be used synonymously for false.

The Boolean constant fail can be used to denote an error. With boolean operators
(and, or, not), fail behaves like the false constant, but remember that fail is always
unlike false, i.e. fail = false results to false.

frue, false, and fail are of type boolean. null, however, has its own type null.

4.9 Tables

Tables are used to represent any more complex data structure. Tables consist of
zero, one or more key-value pairs: the key referencing to the position of the value in
the table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.

Here is a first example: Suppose you want to create a table with the following
meteorological data from Viking Lander 1 which landed on Mars in 1976:

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 |7.70 -81.10
1.10 | 7.70 -82.96

agena >> 43

>VL1:=]

> 1.02~[7.71,-78.28],
> 1.06 ~[7.70, -81.10],
> 1.10~[7.70, -82.96]
>

To get the data of Sol 1.02 (the Marsian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed at the console in two ways: If the global
environment variable EnvLongTable is set to true, then each key~value pair is
printed at a separate line, like in the example above. If EnvLongTable is set to
false, or is unassigned, key~value pairs will be printed in one line. Also, you can
define your own printing function that tells the interpreter how to print a table (or
other structures). In this case, the sefting of EnvLongTable will be ignored. See the
Appendix for further inforrnation on how to do this.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
seguences.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value, [, value,, ...]1]

>A:=[4,5, 6]
[4, 5, 6]

The numbers 1, 2, and 3 are the keys or indices of table A. The corresponding fable
values are 4, 5, and 6. With arrays, the indices always start with 1 and count
upwards sequentially. The keys are always integral, so A in this example is an array
whereas VL in the last chapter is not.

To refer to a table value, enter the name of the table followed by the respective
index in square brackets:

fablenamelkey]

> A1]:
4

44 4 Data

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order:

tablenamelkey][key:][...]

> A =3, 4]
(3, 4]]

The following call refers to the complete inner table which is at index 1 of the outer
fable:

> A[1]:
3, 4]

The next call returns the second element of the inner table.

> A[1][2]:
4

Tables may be nested:

>A:=[4, [5, [6]]]:
[4, [5, [6]1]

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A[2][2][1]:
6

Tables can contain no values at all. In this case they are called empty fables with
values to be inserted later in a session. There are two forms 1o create empty tables.

create table name; [, table name, ...]

name; :=[]

> create table B;

creates the empty table B,
>B:=];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] :="'a’;

agena >> 45

> B:
1~a

Alternatively, the insert statement always appends values to the end of a table:

insert value, [, value,, ...] into name

> insert 'b" into B;

> B:
[a, b]

To delete a specific key~value pair, assign null o the indexed table name:

> B[1] := null;
>B:
[2 ~ b]

The delete statement works a little bit differently and removes all occurrences of a
value from a table.

delete value; [, value,, ...] from name

> insert 'b' into B;
> delete 'b' from B;

> B:
I

In both cases, deletion of values leaves holes™ in a table, which are null values
between other non-null values:

>B:=[1,2,2,3]
> delete 2 from B

> B:
[1~1,4~3]

There exists a special sizing option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of sulbbsequent table inserions, since
with each insertion, Agena checks whether the maximum number of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the default size will be exceeded.

46 4 Data

Arrays with a predefined number of entries are created according to the following
syntax:

create table name;(size,) [, table names(sizey), ...]

When assigning entries to the table, you will save af least 1/3 of computation time if
you know the size of the table in advance and initialise the table with it. If you want
fo insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

4.9.2 Dictionaries
Another form of a table is the dicfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[key, ~ value, [, key, ~ valuey, ...]]]

>A:=[1~4,2~5,3~6]:
[1~4,2~5,3~6]

> B := [abs(p") ~ 'th:
[231 ~ th]

Here is another example with strings as keys:
> dic := ['donald’ ~ 'duck’, 'mickey' ~ 'mouse';

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
to dictionaries.

> dic['donald:
duck

If you use strings as keys, a short form is:

agena >>

47

> dic.donald:
duck

Further entries can be added with assignments such as:

> dic['minney'] := 'mouse’;

which is the equivalent 1o

> dic.minney := 'mouse’;

Dictionaries with an initial number of entries are declared like this:

create dict name(size,) [, dict name;(size,), ...]

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name|(size,)] [. {table | dict} name;|(sizes)]. ...]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are shown in
Table 6. A “structure ™ in this context is a table, set, or sequence.

Operator

Return

Function

cinA

Boolean

Checks whether the structure A contfains the given
value c.

filed A

Boolean

Determines whether a structure contains at least one
value. If so, it returns true, else false.

A=8B

Boolean

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contfain the same values regardless of
the number of their occurrence; if B is a reference to
A, then the result is also frue.

A==

Boolean

Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference 1o A, then the result is also frue.

A<>B

Boolean

Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
their occurrence; if B is a reference to A, then the result
is false.

A subset B

Boolean

Checks whether the values in structure A are also
values in B regardless of the number of their
occurrence. The operator also returns true if A = B.

48 4 Data
Operator Return Function
A xsubset B Boolean | Checks whether the values in structure A are also
values in B. Contrary to subset, the operator returns
false if A = B.
A union B table, Concatenates two tables, or two sets, or two
set, seq | sequences A, B simply by copying all its elements -
even if they occur multiple times - to a new structure.
With sets, all items in the resulting set will be unique, i.e.
they will not appear multiple times.
Aintersect B | table, Returns all values in two tables, two sets, or two
set, seq | sequences A, B that are included both in A and in B as
a new structure.
A minus B table, Returns all the values in A that are not in B as a new
set, seq | structure.
copy A table, Creates a deep copy of the structure A, ie. if A
set, seq | includes other tables, sets, or sequences, copies of
these structures are built, too.
join A string Concatenates all strings in the table or sequence A.
size A number | Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sefs and sequences, the
numier of items is returned.
sort A table, Sorts table or sequence A in ascending order. It
seq directly operates on A, so it is destructive. With tables,
the function has no effect on values that have
non-integer keys.
unique A table, Removes multiple occurrences of the same value and
seq refurns the result in a new structure. With tables, also
removes all holes (‘missing keys') by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.
sadd A number | Sums up all numeric table or sequence values. If the
tfable or sequence is empty or contains N0 numMeric
values, null is returned. Setfs are not supported.
gsadd A numiber | Raises each value in a table or sequence to the

power of 2 and sums up these powers. If the table or
sequence is empty or contains no numeric values, null
is returned. Sets are not supported.

Table 9: Table, set, or sequence and set operators

Here are some examples - fry them with sets and sequences as well:

The union operator concatenates two tables simply by copying all its elements -
even if they occur multiple fimes.

[a, b, c, a,d]

intersect returns all values that are part of both tables as a new table.

agena >> 49

[a]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times o the resulfing table.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members in the right side fable.

[b, c]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times o the resulfing table.

The unique operator

« removes all holes (" missing keys ") in a table,
e removes multiple occurrences of the same value.

and retumns the result in a new table. The original table is nof overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

>unique [1 ~'a',3~"'a, 4~ "'b]
returns [b, a).

You can search a table for a specific value with the in operator. It retuns true if the
value has been found, or false, if the element is not part of the set. Examples:

returns true.

>1in[a,'b, 'c

retuns false. Remember that in checks the values of a table, not its keys.

50 4 Data

4.9.4 Table Functions

Agena has a numiber of functions to work on tables only. The most basic are:

Function Description Further detail
tables.put(f, key, value) | Inserts index key with value | It shifts up the original
value 1o table t. element at position key
and all other elements to
the right.
tables.remove (1, key) Removes index key and All elements to the right
its corresponding value are shiffed down, so that
from f. no holes are created.

Table 10: Basic table procedures

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

>A=11,2];
assigning
>B = A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1,2] ; hence:

> insert 3 into A;

> A:
[1, 2, 3]

also yields:

> B:
[1, 2, 3]

Use copy to create a true copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called "deep copies’). Thus copy retumns a new table without any reference to
the original one.

> B := copy(A);

> insert 4 into A;

> B:
[1, 2, 3]

With structures such as tables, sefs, pairs, or sequences, all names to the left of an

agena >> 51

-> operator will point to the very same structure to its right. This behaviour may be
changed in a future version of Agena.

>A B->]]
>A[l]:=1
> B:
1~1
4,10 Sets

Sefts are collections of unique items: numbers, strings, and other data. Their syntax is:

{ Litem; [, itermy, .11}

Thus, they are equivalent to Cantor sets: An item is stored only once:
>A:={1,1,2 2
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green’, 'blue'};

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelelement]

If an element is stored to a set, Agena retumns true:

> colours['redT:
true

If an item is not in the given seft, the return is false.

> colours['yellow']:
false

If you want to add or delete items to or from a set, use the insert and delete
statements. The standard assignment statement setnamelkey] := value is not
supported with sets.

52 4 Data

insert itemy [, item,, ...] into name

delete ifem; [, itemy, ...] fromm name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, too.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name; [(sizes) 1[, set name, [(sizes)], ...]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the maximum number of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the number of occurrences of a specific item or
its position does not matter. Compared to tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Note that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A:={}; B := A , A and B point o the same set.

As with tables, sets support metamethods which you can be defined 1o extend the
functionality of Agena operators. Metamethods will be explained later in Chapter
6.15.

agena >> 53

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any numiber of items except null. You may sequentially add
items and delete items from it°.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are indexed with positive integers in the same fashion as
table arrays are, starting at index 1.

Metamethods for operator overloading that allow to extend the functionality of the
built-in Agena operators 1o sequences are supported, too (see Chapter 6.15 for
more details). A sequence may hold no, one or more items.

Suppose we want to define a sequence of two values. You may enter these values
into the sequence using the seq operator.

seq([itemy [, itemy, ...] 1)
> a :=seq(0, 1);
> a:
seq(0, 1)

You may access the items the usual way:

seqgnamelnumeric_key]

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned’.

> a[3]:
Error, line 1: index out of range

The way Agena outputs sequences can be changed by using the seftype function.

> settype(a, 'duo’);

> a.
duo(0, 1)

¢ The structure was originally infroduced tfo efficiently support objects like complex numbers or
numeric ranges including a flexible way to pretty print them at the console.
7 The error message can be avoided by defining an appropriate metamethod.

54 4 Data

The gettype function retumns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof function also returns this
user-defined sequence type and will not return 'sequence’

> typeof(a):
duo

This allows you to program special operations only applicable to certain types of
sequences.

A user-defined type can be deleted by passing null as a second argument to

seftype.

> settype(a, null);

> typeof(a):
sequence

The create seq statement creates an empty sequence and optionally allows to
allocate enough memory in advance to hold a given number of elements (which
can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded.

create seq name; [, seq hames, ...]
create seq name;(size) [, seq name;(sizez), ...

ltems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> seq a(4);
> insert 1 into a;
> a[2] = 2;

> a:
seq(l, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
returns an error, since "holes™ in a sequence are not allowed. The next free position
in ais at index 3, however a larger index is chosen in the next example.

>a[4] =4
Error, line 1: index out of range

agena >> 55

>a[3]:=3

ltems can be deleted by sefting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted fo the left, thus their indices will change.

> a[1] := null
> delete 2, 3 from a

>a:
seq()

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A := seq(); B := A ., A and B point 10 the same sequence in
memory.

> A :=seq()
>B:=A
> A[l]:=10

> B:
seq(10)

The following operators, functions, and statements work on sequences:

Function | Description Example

= Equality check the Cantor way a=b

== strict equality check a==

<> Inequality check a<>b

insert Inserts one or more elements. insert 1 into a
delete Deletes one or more elements. delete 0, 1 from a
copy Creates an exact copy of a sequence; deep | P =copy a

copying is supported so that sequences inside
sequences are properly treated.

filed Checks whether a sequence has at least one | filled a
item.

in Checks whether an element is stored in the | 0in seq(l, 0)
sequence, returns frue or false.

join Concatenates all strings in a sequence in | 1oin(a)
sequential order.

size Retums the current number of items. size a

sort Sorts a sequence in place. sort(a)

type Returns the general type of a sequence, i.e. | Ypea
sequence.

typeof Retums the user-defined type of a sequence, | ypeofa

or the basic type if no special type has been
defined.

56 4 Data

Function | Description Example
unique Reduces multiple occurrences of an item in a | Unique a

sequence to just one.
unpack | Unpacks a sequence. See unpack in Chapter | unpack(a)

7.1.
seftype | Sets a user-defined type for a sequence. settype(a, 'duo’)
gettype | Retumns a user-defined type for a sequence. gettype(a)
sefmeta | Assigns a metatable to a sequence. setmeta(a, mtbl)

getmeta | Retumns the metatable stored to a sequence. | 9etmeta(a)

Table 11: Basic sequence procedures

4,12 More on the crea te statement

You cannot only initialise any number of tables with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid;

> create table a, dict b(10), set ¢, seq d(100), ta ble e(10);

>a,b,cde:

0 0 { seal [

4.13 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

itemy 1 item;

The left and right operators provide the only read access to its left and right
operands; the standard indexing method using indexed names is not supported:

left [(] pair)]
right [(] pair)]

> left(p):
1

> right p:
2

agena >> 57

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

>p[1] :=2;
> p[2] :=3;

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof(p):
pair

> settype(p, 'duo’);
>p:

duo(2, 3)

> typeof(p):

duo

> gettype(p):
duo

The only other operators besides left and right that work on pairs are equality,
inequality (= and <>), type, typeof, and in.

>p=32
false

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

>2in 0:10:
true

>'s"in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A ,Aand B
point to the same pair.

58 4 Data
Summary:
Function | Description Example
= Equality check a=b
<> Inequality check a<>b
in If the left operand x is a number and if the left | 1-2in 1:2
and right hand side of the pair a:lbo are numbers,
then the operator checks whether x lies in the
closed interval [a, b] and returns true or false. If at
least one value x, a, b is not a number, the
operator returns fail.
left Retums the left operand of a pair. left(a)
right Retums the right operand of a pair. right(a)
type With pairs, always returns ‘pair type(a)
typeof | Returns either the user-defined type of the pair, or | t yPeof(a)
the basic type (pair) if no special type was
defined for the pair.
seftype | Sefs a user-defined type for a pair. settype(a, ~ 'duo)
gettype | Retums the user-defined type of a pair. gettype(a)
setmeta | Sets a metatable to a pair. setmeta(p, ~ mtbl)
getmeta | Retumns the metatable stored to a pair. getmeta(p)

Table 12: Operators and functions applicable to pairs

4.14 Other types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.

agena >>

59

Chapter Five

Control

60

5 Control

agena >> 61

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement frorn many listed. Its
syntax is as follows:

if condition, then
statements;,

[elif condition, then
statements;]

[else
statements;]

fi

The condition may always evaluate to one of the Boolean values true, false, or fail,
or to any other value.

The elif and else clauses are optional. While more than one elif clause can be
given, only one else clause is accepted. An if statfement may include one or more
elif clauses and no else clause.

If an if or elif condition results to tfrue or any other value except false, fail, or null, its
corresponding then-clause is executed. If any condition results to false, fail, or null,
the else clause is executed if present, otherwise Agena proceeds with the next
statement following the if statement.

Examples:

The condition frue is always frue, so the string 'yes' is printed.

> if true then
> print('yes")
> fi;

yes

In the following statement, the condition evaluates to false, so nothing is prinfed:

>if 1 <> 1then
> print(‘this will never be printed")
> fi;

An if statement with an else clause:

62

5 Control

> if false then

> print(‘this will never be printed")
> else

> print('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> fi;

this will always be printed

An if sfatement with elif and else clauses:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> else

> print('neither will this be printed")
> fi;

this will always be printed

5.1.2 is Operator

The is operator checks a condition and returns the respective expression.

else

S|

is condition then
expression,

expression;

This means that the result is expression, it condition is frue or any other value except

false, fail, or null; and expression., otherwise.

Example:

> x :=is 1=1 then true else false si:
true

which is the same as:

> if 1=1 then
> X :=true
> else

> x:=false
> fi;

agena >> 63

The is operator only evaluates the expression that it will retun. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest is operators.

5.1.3 case Statement

The case statement facilitates comparing values and executing corresponding
statements.

case name
of value, [, values,] then statements,
[of value, [, value,,] then stafements,]

[of ...]
[else statementsy]
esac

>a:='k}
> case a
> of'a’,'e', "', '0, 'u, 'y then result := ‘vowel'
> else result := 'consonant’
> esac;
> result:
consonant

You can add as many of .. then statements as you like. Fall through is not
supported. This means that if one then clause is executed, Agena will not evaluate
the following of clauses and will proceed with the statement right after the closing
esac keyword.

5.2 Loops

Agena has two basic forms of control-flow statements that perform looping: while
and for, each with different variations.

5.2.1 while-Loops

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains frue. If the condition is false, fail or null, no further iteration is done
and control returns to the statement following right after the loop body.

If the condition is false, fail, or null from the start, the loop is not executed at all.

while condition do
statements
od

64 5 Control

The following statements calculate the largest Filbonacci numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do
> c:=b;

> b:=a+b;

> a:=c

> od;

>C:

987

The following loop will never be executed since the condition is false:

> while false do
> print(‘this will never be printed")
> od;

A variation of while is the do .. as loop which checks a condition at the end of the
iteration and thus will always e executed at least once.

do
statements
as condition

>c:=0;
>do

> incc
>as c<10;
>C:

10

for loops are used if the number of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for fable and string iterations.

5.2.2 for/to loops

Let us first consider numeric for/to loops which use numeric values for control:

for [external] name [from sfarf] [to sfop] [by step] do
statements
od

name, start, stop, and sfep are all numeric values or must evaluate to numeric
values.

agena >> 65

The statement at first sets the variable name to the numeric value of sfart. name is
called the confrol or loop variable. If start is not given, the start value is +1. If stop is
not given, the last iteration value is infinity®.

It then checks whether sfart <= stop. If so, it executes statements and returns to the
top of the loop, increments name by sfep and then checks whether the new value
is less or equal stop. If so, statfements are executed again. If sfep is not given, the
control variable is always incremented by +1.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

> forito 3 do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

The loop control variable is local to the loop body, so it cannot be used after
looping completed. However, if you put the external keyword in front of the control
variable, you will have access to the control variable after looping completed and
may use its value in subsequent statements. This rule qpplies only 1o
for/from/to-loops with or without a while extension. Note that if you use the external
option within procedures, you usually want 1o declare the loop control variable as
local, otherwise it will be freated as a global variable.

> for external i to infinity while math.fact(i) < 1 k do od

>
7

When using the external switch the following rules apply to the value of the control
variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement’ within the loop, or
if a for/while loop is terminated because the while condition evaluated to false,
then the control variable is set to the loop's last iteration value before quitting the
loop. There will be no increment with the loop's step size.

® These loops do not run infinitely, but stop af the numeric value of the C constant HUGE VAL which
varies among systems.
? See chapter 5.2.8 for more information in the break statement.

66 5 Control

Loops can also count backwards if the step size is negative:

> forifrom2to1by-1do
> print(i)

> od

2

1

A special form is the to .. do loop which does not feature a control variable and
iterates exactly n times.

>to 2 do

> print(iterating')
>od

iterating

iterating

5.2.3 for/in Loops for Tables

are used to fraverse tables'®, strings, sets, and sequences. Let us first concentrate
on table iteration.

for key, value in bl do
statrements
od

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

>a:=[4,5, 6]
> fori, jinado
> print(i,)

> od

1 4

2 5

3 6

There are two variations: When putting the keyword keys in front of the control
variable, the loop iterates only on the keys of a table:

for keys key in tbl do
statements
od

To be more general, for/in loops iterate over functions called iterators. Check out the Lua
documentation for more information.

agena >> 67

Example:

> for keysiinado
> print(i)

> od

1

2

3

The other variation iterates on the values of a table only:

for value in tbl do
statements
od

> foriin ado
> print(i)

> od

4

5

6

The control variables in for/in loops are always local to the body of the loop, the
external switch is not supported. You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy operator to safely traverse any
structure if you want to change, add, or delete its entries.

5.2.4 for/in Loops for Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

5.2.5 for/in Loops for Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations except the external option
mentioned in the previous subchapter are supported.

for key, value in string do statements od

for value in sfring do sfatements od

for keys value in sfring do sfatements od

68 5 Control

The following code converts a word fo a sequence of abstract vowel, ligature, and
consonant placeholders and also counts their respective occurrence:

> str ;= 'eefter’;
> result ;= ";
>c,v,|->0;

> for i in str do

> casei

> of 'a’, 'e', 'I', '0', 'u' then

> result ;= result .. 'V

> incv

> of ‘&', ‘&', '@g', '6' then

> result :=result .. 'L";

> inc |

> else

> result := result .. 'C'

> inc c

> esac

> od;

> print(result, v .. " vowels', | .. ' ligatures', c .. ' consonants’);
LCCcvC 1 vowels 1 ligatures 3 consonan ts

5.2.6 for/in Loops for Sets

All for loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister := {'swistar', 'sweastor’, 'svasar’, 'sist er}

> for i in sister do print(i) od;
svasar

swistar

sweastor

sister

You may try the other loop alternatives to see what happens.

5.2.7 for/while Loop s

All flavours of for loops can be combined with a while condition. As long as the
while condition is safisfied, the for loop iterates. To be more precise, before Agena
starts the first iteration of a loop or continues with the next iteration, it checks the
while condition to be true or any other value except false, fail, or null.

for [external] i [from Q] to b [by step] while condition do statements od
for [key,] value in struct while condifion do statements od
for keys key in sfruct while condition do statements od
for [key,] value in string while condition do statements od
for keys key in sfring while condition do statements od

agena >> 69

An example:

> for x to 10 while In(x) <= 1 do print(x, In(x)) o d
1 0
2 0.69314718055995

Regardless of the value of the while condition, the loop control variables are always
initiatfed with the start values: with for/to loops, a is assigned to i (or 1 if the from
clause is not given); key and/or value are assigned with the first item in the table,
set, or sequence sfruct or the first character in string string.

5.2.8 Loop Interruption

Agena features two statements to manipulate loop execution. Both are applicable
to all loop types.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

> forito5do

> if i = 3 then skip fi;
> print(i)

> if i = 4 then break fi;
> od;

1

2

4

This is equivalent to the following statement:

> forito 5 whilei<5do
> if i = 3 then skip fi;

> print(i)

> od;

1

2

4

>a:=0;

> while true do

> inca

> if a > 5 then break fi
> ifa<3thenskipfi
> print(a)

> od

3

4

5

70

5 Control

agena >>

71

Chapter Six

Programming

72

6 Programming

agena >> 73

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programs are usually represented as procedures. The words " procedure’
and “function” are used synonymously in this text.

6.1 Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Wiriting procedures in Agena is quite simple:

procname = proc([par, [::fypeq] [, par:[::fypes], ...]]) [is]
[local name; [, namey, ...]];
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.7). The is keyword is optional.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
inferactive level are global, and you can also creafe global variables within @
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is retfumned using the return keyword which may be put
anywhere in the procedure body.

retun value [, value?2, ...]

As you can see, you may not only return a single result, but also multiple ones.

Also, a procedure might not necessarily return anything - in this case do noft use the
return statement at all. If no return statement is given, the procedure does not even
retun the null value.

74 6 Programming

The following procedure computes the factorial of an integer'":

> fact := proc(n) is
computes the factorial of an integer n
if n < 0 then return fall
elif n = 0 then return 1
else return fact(n-1)*n
fi
end;

VVVYVYVYV

It is called using the synfax:

funcname([args [, argz, ...]1)

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately lead to stack overflows. So we should use an iterative
algorithm fo compute the factorial and store infermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable and assign values later
fo this variable, then it is global. Note that control variables in for loops are always
implicitly declared local if the external switch is not used, so we do not need to
explicitly declare them.

Local declarations come in different flavours:

local name; [, names, ...]
local name, [, name,, ...] := value, [, value,, ...]
local name; [, name, ...] -> value
local enum name; [, name,, ...] [from value]

In the first form, name,, etc. are declared local.

""The library function math.fact is much faster.

agena >> 75

In the second and third form, name,, etc. are declared local followed by initial
assignments of values to these names.

In the last form, name,, etc. are declared local with a sulbbsequent enumeration of
those names.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then break fi
od;
return result
end;

VVVVVYVVYV

> fact(10):
3628800

result has been declared local so it has no value at the interactive level.

> result:
null

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable EnvMorelnfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the global keyword. This is optional,
however, and only serves documentary purposes.

> fact := proc(n) is

> global _EnvMorelnfo;

> if n <0 then return fail fi;
> |ocal result ;= 1;

> forifrom 1tondo

> result ;= result * i

> if result = infinity then
> if _EnvMorelnfo then print('Overflow !') fi;
> break

> fi
> od;
> return result
> end;

76 6 Programming

We must assign EnvMorelnfo a value in order to get a warning message at
runtime.

> EnvMorelnfo ;= true;

> fact(10000):

Overflow !

infinity

6.4 Changing Parameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alfernative to the abs operator might be:

> myAbs := proc(x) is
> ifx<0then

> X 1= -X
> fi;
> return X
> end;

> myAbs(-1):
1

6.5 Optional Arguments

A function does not have 1o be called with exactly the number of parameters given
at procedure definition. You may optionally pass less or more values. If no value is
passed for a parameter, then it is automatically set 1o null at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warning message by
passing an optional argument instead.

> fact := proc(n, warning) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then
if warning then print(‘Overflow !) fi;
break
fi
od;
return result
end;

VVVVVVVVVVYV

> fact(10000):
infinity

The option should be any value other than null, false, or fail to get the effect.
> fact(10000, true):

Overflow !
infinity

agena >> 77

A variable numiber of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body.

> varadd := proc(?) is
> local result := 0;

> forito size varargs do
> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):

15

You may determine the number of arguments actually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;

> forito nargs do

> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):
15

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode ='domain":"real’ then
> return sqrt(x)

> elif mode = 'domain".'complex’ then
> return sqrt(x + 0*l)
> else

> return fail

> fi

> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain’:'real’):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the ~ token which converts the
left-nand name to a string.

> xsqrt(-2, domain ~ 'complex’):
1.4142135623731%

78 6 Programming

6.6 Passing Options in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

f:=proc(?) is
local bailout, iterations := 2, 128; # default values
for i to nargs do
case left(varargsi])
of 'bailout' then
bailout := right(varargs]i]);
of 'iterations' then
iterations := right(varargsli]);
else
print ‘'unknown option’
esac
od;
print(‘bailout =" .. bailout, 'iterations =" .. iterations)
end;

> f();

bailout =2 iterations = 128

VVVVVVVVVVYVYVYVYV

> f('bailout:10);

bailout =10 iterations = 128
> f('iterations':32, 'bailout':10);
bailout =10 iterations = 32

Again, the single quotes around the name of the option (left-hand side of the pair)
can be spared by using the ~ token which converts the given name to a string.

> f(bailout ~ 10, iterations ~ 32);
bailout =10 iterations = 32

6.7 Type Checking & Error Handling

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has three facilities for this:

1. The type operator determines the type of its argument.

2. A type can be optionally specified in the parameter list of a procedure by
means of the preceding :: token so that it will be checked at procedure
invocation.

3. The try statement checks whether one or more values are of a specific type.

The language also provides the error handling function that interrupts the execution
of a procedure and prints an error message if given.

The following types are available in Agena:

boolean, complex, lightuserdata, null, number, p air, procedure,
sequence, set, string, table, thread, userdata.

agena >> 79

These names are reserved keywords, but evaluate to strings so that they can be
compared with the result of the type operator that returns the type of a value as a
string.

> type(1):
number

> fact := proc(n) is

> if type(n) <> number then
> error('number expected’)
> Ai;

> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10":

Error: number expected
in function fact, line 3

You may also optionally specify types in the parameter list of a procedure by using
double colons:

> fact := proc(n::number) is
> if n <0 then return null
> elif n=0thenreturn 1
> else return fact(n-1)*n
>

> end;

> fact('10"):
Error: invalid type for argument #1: expected numbe r, got string.

This form of type checking is more than twice as fast as the if/type/eror
combination. If the argument is of the corect type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
missing argument #1 (type number expected).

Another efficient way of type checking is provided by the try statement.

fry name; [, name,, ...] as fypename,, [names [, namey, ...] as fypename,, ...]

fry name; [, name,, ...] as fypename; else errorstring,
[, names [, namey, ...] as fypename; else errorstringo, ...

In the first form, a standard error message is displayed and further computation
stops. In the second form, a user defined error text is printed and execution of the
function is interrupted.

80 6 Programming

> fact := proc(n) is

> try n as number;

> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

>

> end;

> fact('10"):

Error, line 2: expected number, got string for argu ment #1.
in function fact, line 2

> fact := proc(n) is
> try n as number else 'bad value for argument’;
> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10"):
Error, line 2: for argument #1: bad value for argum ent
in function fact, line 2

Note that the type operator, the double colon functionality, and the try statement
only check for basic types. If you want to check user-defined types for procedures,
tables, sequences, sets, and pairs, you should use the typeof operator.

6.8 Multiple Returns

As stated before, a procedure can return no, one, or more values. There are two
ways to use these multiple returns in subbsegquent statements.

Consider the strings.find library function. It searches for a paftern in a sting and
returns the first and the final position of the pattern as two numbers.

> strings.find('Wulfila', 'ila’):
5 7

If you assign the return to only one variable, e.qQ.

> m := strings.find('Wulfila', 'ila’):
5

the second return is lost, so enter:

> m, n := strings.find('Wulfila', 'ila");

agena >> 81

A function may also return a variable number of values. To store any of these returns
for later access, just put the returns in a sequence or table:

> seq(strings.find('Wulfila', 'ila")):
seq(5, 7)

6.9 Shortcut Procedure D efinition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if .. then, for, inser,
etc.

<< [(] [oar, [:: type4] [, par: [:: type2], ...]])] -> expr >>

As you see, optional types can be specified in the parameter section.

Let us define a simple factorial function.

> fact ;= << (x::number) -> exp(gammaln(x+1)) >>
> fact(4):
24

Brackets around the parameters are optional, even if you specify types.

> isInteger := << x -> int(x) = x >>

> isinteger(1):
true

> isinteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargs table as described above.

6.10 User-Defined Procedure Types

The settype function allows to group procedures proc;, proc., ..., by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pAirs.

settype(proc, [, proc,, ...], 'your_proctype')

The typeof operator returns the user-defined type of an object as a string. If no
special type has been defined, it returns its basic type. The lafter also applies to
data types where settype cannot set user-defined types.

82 6 Programming

typeof(proc)

The type operator does not return the user-defined type even if it is seft, it will always
return the basic type of an object.

>fi=<<x->1>>
> settype(f, '‘constant’)

> typeof(f):
constant

> type(f):
procedure
6.11 Scoping Rules

In Agena, variables live in blocks or “scopes’. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, if- and case-statements, while-, do- and for-loops create blocks.
Variables declared local within procedures are only visible in these procedures.

Variables declared local in the then clauses of an if-statement live only in the
respective then part. The same applies to variables declared local in else clauses.

> f:= proc(x) is

> if x> 0then

> local i := 1; print('inner, i)
> else

> local i := 0; print('inner, i)
> fi;

> print(outer’, i) #iis not visible
> end,;

> f(1);

inner 1

outer null

Variables declared local in for- or while-loops are only accessible in the bodies of
these loops. The loop control variables of for/to- and for/in-loops are implicitly
declared local to the respective loop bodies, with the exception of the external
facility of for/to loops which is described in the next subchapter.

f:=proc(x) is
while x < 2 do
local i :=x
inc x
print(‘inner’, i)
od;
print('outer’, i) #iis not visible

VVVVYVYVYV

agena >> 83

> end;
> f(2);

inner 1
outer null

A special scope can e declared with the scope and epocs statements:

scope
declarations & statements
epocs

The next example demonstrates how it works:

f:=proc() is
local a :=1;
scope
local a := 2;
writeline('inner a: ', a);
epocs;
writeline('outer a: ', a);
end;

> f()

inner a: 2
outer a: 1

VVVVVYVVYV

6.12 Loops in Procedures

As already noted, the control variable of a for/to loop is only local to the loop itself -
but if you use the external keyword in the loop declaration, you will have access 1o
it after execution of the loop completed. Make sure that in this case, you define the
control variable local.

> mandelbrot := proc(x, Y, iter, radius) is

> ocali,c, z;

> z:=xly;

> c:=2z

> for external i from O to iter while abs(z) <r adius do
> z:=2"2+cC

> od;

> returni # return the last iteration value

> end;

The procedure counts the number of iterations a complex value z takes to escape
a given radius by applying it to the formula z = z” 2+c. Since the loop control
variable i has been declared external, it can be used in the return statement.

The following example demonstrates that local variables are bound to the block in
which they have been declared.

> f:=proc() is

> ocal i;

> for external i to 3 do
> local j;

84 6 Programming

> for external j to 3 do od;
> print(i, j)

> od,

> print(i,)

> end;

S>ShhAD

ull

6.13 Packages

6.13.1 Wriiting a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usually stored to a table, so we first create a table called
helpers . After that, we assign the procedure ndigits and the auxiliary isinteger
function to this table.

> create table helpers;
> helpers.isinteger := << x -> int(x) = x >>; # au x function

> helpers.ndigits := proc(n::number) is
> if not helpers.isinteger(n) then
> error(‘'argument is not an integer’)
> i

> ifn=0then
> return 1
> else

> return entier(In(abs(n))/In(10) + 1);
> i

> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):

Error: argument is not an integer
in function ndigits, line 4

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;

> ndigits(999):
3

agena >> 85

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order fo use the package again after you
have restarted Agena, use the run function.

> restart;

> run “d:/agena/helpers/helpers.agn
> helpers.ndigits(10):

2

You may print the contents of the package table at any fime:

> helpers:
[isInteger ~ procedure(0044A6EQ), ndigits ~ procedu re(0044A850)]

6.13.2 The with Function

The with function besides loading the package in a convenient way, automatically
assigns short names to all or a user-defined set of package procedures so that you
may use the shortcuts instead of the fully written function names.

> restart;

> with “helpers
isInteger, ndigits

> isInteger(1); # same as helpers.isinteger(1)

You may also want with to print a start-up notice at every package invocation if you
assign a string fo the table field packagename .initstring. Put the following code info
the helpers.agn file, save the file and restart Agena:

> helpers.initstring := 'helpers v1.0 as of Decembe r 24, 2007\n";

> restart;

> with “helpers
helpers v1.0 as of December 24, 2007

isInteger, ndigits

Since you may not want that short names are set for auxiliary functions, you can put
the names of all procedures for which short names shall be assigned as strings into
the packagename .loaded table using the register function. Insert the following line to
your helpers.agn file at any position:

> register(helpers, “ndigits);
The contents of the helpers.agn file should finally look like this:

create table helpers;

86 6 Programming

helpers.initstring := 'helpers v1.0 as of December 24, 2007\n";
helpers.isinteger ;= << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n) is
try n as number;
if not helpers.isinteger(n) then
error(‘argument is not an integer’)
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

register(helpers, 'ndigits");

Save the file again and restart Agena.
> restart;

> with “helpers
helpers v1.0 as of December 24, 2007

ndigits

If your package includes an initialisation routine, then it will be run after the package
has been found successfully. The name if the initialisation routine must be of the
form “packagename.init™, e.g.:

> helpers.init := proc() is
> writeline('l am run’)
> end;

6.14 Remember tables

Agena features remember tables which if present hold the results of previous calls
to Agena or APl C procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed. Remember tables are called rfables or rofables for short.

There are two types of remember tables:

e Standard Remember Tables, called "rables’, that can be automatically
updated by a call to the respective function; they may e initialised with a list of
precomputed results (but do not need 10).

* Read-Only Remember Tables, called "rotables”, that cannot be updated by a
call to the respective function. Rotables should e inifialised with a list of
precomputed results.

agena >> 87

6.14.1 Standard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have rememiber tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table, they must explicitly be
created with the rinit function and opfionally filled with default values with the rset
function. Since those functions are very basic, a more convenient facility is the
rememiber function which will exclusively be used in this chapfer.

In order for an rtable to be automatically updated, the respective function must
retun its result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return stafement adds these arguments and the corresponding result or results fo
the rfable.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:
>fi=<<x->x>>;

Only after the function has been created, the rable (short for remnemlber table) can
be set up. The remember function can be used to initialise rtables, explicitly set
predefined values to them, and add further values later in a session.

> remember(f, [0~undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument O returns undefined and not O.

> f(1):

1

> f(0):
undefined

If the function is redefined, the rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)
> end;

The call to assume assures that n is always non negafive and serves as an
“emergency brake” in case the remember table has not been set up propertly.

88 6 Programming

The rtable is being created with two default values:
> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

1~[1~1]
2 ~[1~1]
3 ~[1~2]
4 ~[1~3]
5 ~ [1~5]
6 ~ [1~8]
7 ~[1~13]
8 ~ [1~21]

9 ~ [1~34]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f:=proc(x, y) is
> returnx,y
> end;

> remember(f, [[1, 2] ~ [0, 0]));
>a, b:=1(1, 2);

Please check Chapter 7.1 for more details on their use.

6.14.2 Read-Only Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
‘rotable” for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries 1o its rememier table via the
return statement; it can only do so via a call to the rset function (or a ufility that is
based on rset). This gives you total control of the contents and the amount of data
stored in a rememioer table - and thus on the speed of your procedure.

agena >> 89

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results forn < 11, but retrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x::number) is

> ifint(x) = x then # is x an integer and nonne gative ?
> return exp(gammaln(x+1))

> else

> return undefined

>
>

end;

The defaults function can set up the rotable and enter precomputed values into it.
> # set precompiled results for 0! to 10! to fact

> defaults(fact, [

0~1.0000000000000000e+00, 1.0000000000000000e+ 00,
2.0000000000000000e+00, 6.0000000000000000e+00
2.4000000000000000e+01, 1.2000000000000000e+02
7.2000000000000000e+02, 5.0400000000000000e+03
4.0320000000000000e+04, 3.6288000000000000e+05
3.6288000000000000e+06]);

VVVYVYVYV

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3 1~1[6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the defaults function:

> defaults(fact, [11 ~ 39916800]); defaults(fact):

[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5]1 ~ [120]]

A read-only remember table can be deleted by passing null as a second
argument to defaults.

6.14.3 Functions for Remember Tables
For completeness, all basic functions which work on rtables are the following:

Procedure Details

rinit(f) Initialises a standard remember table for the
function f .

hasrtable (f) Checks whether procedure f possesses an rfable.

rget(f) Returns the rtable of function f .

90 6 Programming

Procedure Details

roinit(f) Initialises a read-only remember table for the
function f .

rset(f, argument, return) Adds function argument(s) and the corresponding

rset(f, [arguments], [returns]) | retum(s) to the rtable of procedure f .

rdelete(f) Deletes the rtable of function f entirely. If you want

to use a new rtable with the function, you have to
inifialise it with rinit again.

rwritemode(f) Returns true if a function has a standard
remember table, false if it has a read-only
remember table, and fail if it has no rememiber
table at all.

Table 13: Functions for remmember tables

6.15 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means 1o apply existing operators to tables, setfs, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to learn names of new functions'?.

This method of defining additional functionality to existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + foken, determining their absolute value with the
standard abs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part af the second.

> cmplx := proc(a::number, b::number) is
> create local seq r(2);

> inserta, bintor;

> returnr

> end;

To define a complex value, say z = 0 + J, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0,1) . This can be easily done with the settype function:

"2For performance reasons, complex arithmetic has been built directly into the Agena kemnel.

agena >> 91

> cmplx := proc(a::number, b::number) is
> create local seq r(2);

> inserta, bintor;

> settype(r, 'cmplx’);

> returnr

> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error, line 1: attempt to perform arithmeticon a s equence value

Metamethods are defined using dictionaries, called “metatables” . Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See the Appendix A2 for
a list of all available method names. To overload the plus operator use the ' add'
string.

Assign this metamethod to any name, cmplx_mt in this example.

>cmplx_mt =

> ' add'~ proc(a, b) is

> return cmplx(a[1]+b[1], a[2]+b[2])
> end

>]

Next, we must attach this metatable cmplx_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable:

> cmplx := proc(a::number, b::number) is

> create local seq r(2);

> inserta, bintor;

> settype(r, 'cmplx’);

> setmetatable(r, cmplx_mt);
> returnr

> end;

Try it

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method 1o calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt.__abs := << (a) -> math.hypot(a[1], a[2]) >>;

The metatable now contains two methods.

92 6 Programming

> cmplx_mt:
__add ~ procedure(003FE3ES)
__abs ~ procedure(0046CE80)

>z := cmplx(1, 1)

> abs(z):
1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the ' tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is
> return is z[2]<0 then z[1]..z[2].."I' else z[1].'+'..z[2].."T' si;
> end;

>z
1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit | = O+i and use it in subsequent operations. Before assigning the i
unit, we have to add a metamethod for multiplying a number with a complex
number.

> cmplx_mt.__mul := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = ‘cmplx’ then

> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx’' then

> return cmplx(a*b[1], a*b[2])

> fi

> end;

and also extend the metamethod for complex addition.

>cmplx_mt.__add := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = ‘cmplx’ then
> return cmplx(a[1]+b[1], a[2]+b[2])

> elif type(a) = number and typeof(b) = 'cmplx’ then
> return cmplx(a+b[1], b[2])

> Ai;

> end;

> i:= cmplx(0, 1);

> a = 1+2*:
1+2i

Until now, the real and imaginary pars can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like zere and z.im in
both read and write operations is provided by the ' _index and ' writeindex'
metamethods, respectively.

agena >> 93

The index metamethod for reading values from a structure works as follows:

e |f the structure is a table, then the metamethod is called if the call to an indexed
name results to null.

e |f the structure is a set, then the metamethod is called if the call to an indexed
name results to false.

* If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The wiiteindex metamethod for writing values to a structure works as follows:

e |f the structure is a table, sequence or pair, then the metamethod is always
called.
* The metamethod is also supported by the insert statement.

The respective procedures assigned to the index and _ writeindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawget function to directly read values from a
structure, and the rawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to intfeger keys:
> cmplx_indexing := [re'~1, 'im'~2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like are and a[1] . In the following read procedure the argument x
represents the complex value, and the argument y is assigned either the string 're’

or 'im . Thus, cmplx_indexing[re] will evaluate to the index 1, and
cmplx_indexing['im’] to index 2.

> cmplx_mt.__index := proc(x, y) is # read operati on

> if type(y) = string then # for calls like "a. re’ or "a.im’

> return rawget(x, cmplx_indexing[y])

> else

> return rawget(x, y) # for calls like "a[1] or "a[2]

> fi

> end;

In the write procedure, argument x will hold the complex value, y will be either 're'
or'im , and z is assigned the component - a rational number -, i.e. x.re := z or
X.im:=z

> cmplx_mt.__ writeindex := proc(X, Y, z) is # writ e operation
> if type(y) = string then

> rawset(x, cmplx_indexing[y], z)

> else

> rawset(x, y, z) # for assignments like "a[1] := value’
> fi

> end;

You can now use the new methods.

94 6 Programming

>a
1+2i

> a.re:
1

>a.im:=3

> a:
1+3i

6.16 Extending built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot,

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> math.arcsin(-2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the next statement.

The new function definition might be:

> scope

>

> # save the original function in a “hidden" var iable
> local oldarcsin := math.arcsin;

>

> math.arcsin := proc(x) is # new definition

> local result := oldarcsin(x);

> if result = undefined then # switch to com plex domain
> result := oldarcsin(x+0*1)

> fi;

> return result

> end;

>

> epocs;

agena >> 95

The original function math.arcsin is stored to the local oldarcsin variable so that the
user can no longer directly access it.

> math.arcsin(-2):
-1.5707963267949+1.3169578969248*

If you wish to permanently use your redefined functions, just put them into the
agena.ini file, located in the lib folder of your Agena installation. Since files have
their own “scope ', the scope and epocs keywords are no longer needed (but can
be left in the file).

6.17 File /O

Agena features various functions o deal with files, to read lines and write values to
them. Most of the functions come from Lua. All the functions processing files are
included in the io package.

6.17.1 Reading Text Files

One of the most useful functions to read in a text file line by line is the io.lines
procedure which accepts the name of the file to be read as a sting. They are
usually used in for loops. The line read is stored to the loop key, the loop value is
always null.

> for i, j inio.lines('d:/agena/lib/agena.ini') do

> print(, j)

> od

execute := os.execute; null
getmeta ;= getmetatable; null
setmeta := setmetatable; null

6.17.2 Writing Text Files

To write numbers or strings into a file, we must first create it with the i0.open function.
The second argument tells Agena o open the file in “write” mode.

> file := io.open('d:/file.text', 'w'");

i0.open returns an infeger, a so-called file handle. File handles are used in many 10
functions, e.qg. the write procedure.

> jo.write(file, 'l am a text.");
After all values have lbeen written, the file must be closed with io.close.
> jo.close(file);

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numibers or strings - can

96 6 Programming

be accessed and stored to the file thereafter. The same qpplies to pairs: use the
left and right operators to write their components.

The following statements write all keys and values to the file. The keys and values are
separated by a pipe ' , and a newline is inserted after each key~value pair has
been added. Notfe that you can mix numibers and strings.

> a :=[10, 20, 30];
> file ;= io.open('d:/table.text’, 'w');

>fori,jinado _

> io.write(file, i, [, j, '\n")
> od;

> jo.close(file);

agena >>

97

Chapter Seven

Standard Libraries

98

7 Standard Libraries

agena >> 99

7 Standard Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services fo the language (e.g., next and getmetatable; others provide
access to "outside" services (e.g., I/O); and others could be implemented in Agena
itself, but are quite useful or have ciritical performance requirements that deserve
an implementation in C (e.Q., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Agena has the following standard libraries:

* the basic library,

* package library,

o string library,

« table library,

« mathematical library,

» two input and output libraries,
» operating system library,

* debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have
directly built into the kernel (the Virtual Machine), so they are not part of any library.

7.1 Basic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

abs (x)

If x is a number, the abs operator will return the absolute value of x. Complex
numbers are supported.

If X is a Boolean, it will return 1 for frue, O for false, and -1 for fail.

If x is null, abs will return -2,

100 7 Standard Libraries

If X is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function returns fail.

anames (v)

Returns all global names that are assigned values in the environment.

The function is written in the Agena language and included in the library.agn file.

assigned (v)

This Boolean operator checks whether any value different from null is assigned to
the expression v. If v is already a constant, i.e. a number or a string, the operator
always returns false. If v evaluates 1o a constant, the operator returns frue.

See also: isnull.

assume (v [, message])

Issues an error when the value of its argument v is false (i.e., null or false); otherwise,
returns all its arguments. message is An error message; when absent, it defaults to
"assumption failed".

attrib (o)
With the table o, returns a new table with

e the cumrent maximum number of key~value pairs allocable to the array and
hash parts of o; in the resulting table, these values are indexed with keys
‘array_allocated' and 'hash_allocated' , respectively,

* the number of key~value pairs actually assigned to the respective array and
hash sections of o; in the resulting table, these values are indexed with keys

‘array_assigned' and 'hash_assigned' ,
e an indicator ‘array_hasholes' stafing whether the array part contains af least
one hole.

With the set o, returns a new table with

* the current maximum number of items allocable to the set; in the resulting
table, this value is indexed with the key 'hash_allocated'

* the number of items actually assigned to o; in the resulting table, this value is
indexed with the key 'hash_assigned'

With the sequence o, returns a new table with
* the maximum numlber of items assignable; in the resulting fable, this value is

indexed with the key 'maxsize’ . If the number of entries is not restricted,
'maxsize’ s infinity.

agena >> 101

* the curent number of items actually assigned to o; in the resulting table, this
value is indexed with the key 'size'

With the function o returns a new table with

* the information whether the function is a C or an Agena function. In the resulting
table, this value is indexed with the key 'C' ;

e whether a function contains a remember table, indicated by the C
fableWriternode', where the entry true indicates that it is an rfable (which is
updated by the return statement), where false indicates that it is an rotable
(which cannot be updated by the return statement), and where fail indicates
that the function has no remember table at all.

bye
Quits the Agena session. No argument or brackets are needed.

clearvli[, v2,..]

Deletes the values in variables vi, v2, ..., and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

concat (obj [, sep [, i [, jlll)

Returns obij[i]..sep..objli+1] --- sep..obj[j] , where obj is either a table or
sequence of strings. The default value for sep is the empty string, the default for i is
1, and the default for j is the length of the table. If i is greater than j, retuns the
empty string. The empty string is also returmned, if obj consists entirely of non-strings.

Use the toString function if you want to concatenate other values than strings, e.g.:

> concat(map(toString, [1, 2, 3])):
123

defaults (func)
defaults (func, tab)

defaults (func, null)

Administrates read-only remember tables of functions. As it works exactly like the
remember function, except that it creates rememiber tables that cannot be
updated by the return statement, please refer to the description of the remember
function for further details.

error (message [, level])

Terminates the last protected function called and returns message as the error
message. Function eror never returns.

102 7 Standard Libraries

Usually, eror adds some information about the error position at the beginning of the
message. The level argument specifies how to get the error position. With level 1 (the
default), the error position is where the eror function was called. Level 2 points the
error to where the function that called error was called; and so on. Passing a level O
avoids the addition of error position information fo the message.

G

A global variable (not a function) that holds the glolbbal environment (that is, _G._G =
_G). Agena itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, or sequence obj contains at
least one item and returns true if so; otherwise it returns false.

gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt :

» 'stop': stops the garbage collector.

* restart: restarts the garbage collector.

» 'collect: performs a full garbage-collection cycle (if no option is given, this is
the default action).

* 'count: returns the total memory in use by Agena (in Kbytes).

» 'step". performs a garbage-collection step. The step 'size' is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
frue if the step finished a collection cycle.

» 'setpause’: sets arg/100 as the new value for the pause of the collector.

» ‘'setstepmul sefs arg/100 as the new value for the step multiplier of the
collector.

getfenv (f)

Returns the current environment in use by the function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling getfenv. If the given function is not an Agena function, or if f is O, getfenv
returns the global environment. The default for fis 1.

globals (f)

Determines'® whether function f includes global variables (names which have not
been defined local).

"*Note that the function not always returns all global names.

agena >> 103

getmeta (object)
getmetatable (object)

If object does not have a metatable, returns null. Otherwise, if the object's
metatable has a ' metatable' field, returns the associated value. Otherwise, returns
the metatable of the given object.

gettype (0)

Returns the type - set with settype - of a function, sequence, set, or pair o as a
string. If no user-defined type has been set, or any other data type has been
passed, null is returned.

See also: seftype.

has (s, X)

Checks whether the structure s (a table, set, sequence, or pair) contains element x.
With tables, both indices (keys) and entries are scanned (if the index is a set, table,
pair, or sequence, the index is not scanned, however). With sequences, only the
entries (not the keys) are scanned. With pairs, both the left and the right item is
scanned. The function performs a deep scan so that it can find elements in deeply
nested structures.

The function is written in the Agena language and included in the library.agn file.

hasrtable (f)

Checks whether function f has a remember table. It returns true if it has got one,
and false otherwise.

isnull (v)

This Boolean operator checks whether an expression v evaluates to null. If v is a
constant, i.e. a number or a string, the operator always returns false.

See also: assigned.

left (p)
Returns the left operand of a pair.

See also: right.

load (func [, chunkname])

Loads a chunk using function func o get its pieces. Each call o func must return a
string that concatenates with previous results. A return of null (or no value) signals the
end of the chunk.

104 7 Standard Libraries

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment,

chunkname is used as the chunk name for error messages and debug information.

loadClib (packagename, path)

Loads the C library packagename (with extension .so in UNIX or .dil in Windows)
residing in the folder denoted by path . path must be the name of the folder where
the C library is stored, and not the absolute path name of the file. The function
retuns true in case of success and false otherwise.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from the standard input, if
no file name is given.

loadstring (string [, chunkname])
Similar fo load, but gets the chunk from the given string. To load and run a given
string, use the idiom

assume(loadstring(s))()

map (f,o [, ...])

This operator maps a function £ to all the values in table, set, sequence, or pair o.
The function must return only one value. The type of return is the same as of o. If o
has metamethods, the return will also have them. If o is a sequence or pair, its
special type if present is copied, as well.

If function f has only one argument, then only the function and the structure o must
be passed to map. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or seft.

Examples:

>map(<< x->x"2>> 11,2, 3]):
1~1
2~4
3~9

>map(<<(x,y)->x>y>>1[-1,0,1],0): #0 fory
1 ~ false
2 ~ false
3 ~true

See also: zip, select, remove.

agena >> 105

maptoset (function, obj [, ...])

Maps a function to all the values in table or sequence obj and retuns a set.
Metamethods if existing are not copied. See map for further information.

max (t [, 'sorted")

Returns the maximum of all numeric values in table or sequence t. If the opftion
'sorted’ is passed than the function assumes that all values in t are sorted in
ascending order and returns the last entry.

See also: min.

min (t [, 'sorted)

Returns the minimum of all numeric values in table or sequence t. If the option
'sorted’ is passed than the function assumes that all values in t are sorted in
ascending order and returns the first entry.

See also: max.

next (o [, index])

Allows a program to traverse all fields of a table or all items of a set or sequence.
With strings, it iterates all its characters. Its first argument is a table, set, string, or
seguence and its second argument is an index in the structure.

With tables or sequences, next returns the next index of the structure and its
associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With setfs, next returns the next item of the set twice. When called with null as its
second argument, next returns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use nexi(t) 1o check whether a table or set is empty. However, it is recommended 1o
use the filled operator for this purpose.

The order in which the indices are enumerated is not specified, even for numeric
indices. The same applies to set items.

106 7 Standard Libraries

The behaviour of next is undefined if, during the traversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

ops (index, ---)

If index is @ number, returns all arguments after argument number index . Otherwise,
index Must be the string '# , and ops returns the total number of extra arguments it
received. The function is useful for accessing multiple retuns (e.g. ops(n, ?)).

pcall (f, argl, --)

Calls function f with the given arguments in profected mode. This means that any
error inside f is not propagated; instead, pcall catches the error and returns a status
code. lts first result is the status code (a boolean), which is true if the call succeeds
without errors. In such case, pcall also returns all results from the call, after this first
result. In case of any error, pcall returns false plus the error message.

pointer (0)

Converts o to a generic C pointer (void*) and refumns the result as a string. o may be
a userdata, table, set, sequence, pair, thread, function, or complex value;
otherwise, pointer returns fail. Different objects will give different pointers.

print (---)

Receives any number of arguments, and prints their values to stdout , using the
toString function to convert them to strings. print is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the confents of tables and nested tables to stdout if No
__tostring metamethods are assigned to them. The same applies to sets and
sequences. After _EnvMore number of lines, print halts for the user to press any key
for further output. Press 'q’, 'Q', or the Escape key to quit. The default for _EnvMore is
40 lines, but you may change this value in the Agena session or in the agena.ini
file.

If the environment variable EnvLongTable is set to true, then the each key~value
pair is printed on a separate line.

You may change the way print formats objects by changing the respective
_EnvPrint functions in the library.agn file. See Appendix A5 for further details.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a
boolean.

agena >> 107

rawget (obj, index)

Gefts the real value of objlindex] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index May be any value.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of objlindex] fo value , without invoking any
metamethod. obj mMmust be a table, sequence, or pair, index any value different
from null, and value any value.

In the second form, the function inserts value into the next free position in the given
structure obj . obj can be a table, set, or sequence.

This function returns obj .

rdelete (func)

Deletes the remember table or read-only remember table of procedure func
entirely. The function returns null.

read (fn)
Reads an object stored in the binary file denoted by file name tn and returns it.

The function is written in the Agena language and included in the library.agn file.

See also: save, debug.doubleendiantest .

readlib (packagename)

Loads and runs packages stored to agn text files (with flename packagename .agn) or
binary C libraries (packagename .0 in UNIX, packagename .dll in Windows).

The function first tries to find the binary C library which must reside in the /lib folder of
the Agena directory. If it finds it, it loads and runs the library and proceeds with the
next step.

Next, the function tries to locate an Agena text file library in the folder /packagename
of the Agena directory and loads, runs it when found and quits thereafter. Otherwise
it tries to find the library in the /ib folder in the Agena directory, loads and runs it
when found.

Make sure that in your operating system, you have set the environment variable
AGENAPATH to the main folder where Agena resides and that the path does not
end with a slash. In Win32, you my set the variable with the following statement:

SET AGENAPATH=d:/agena

108 7 Standard Libraries

The function returns true if the package has been successfully loaded and
executed, or false if an error occurred.

You may also pass a complete file name (with or without path) to the function. In
this case the given file is loaded and executed.

See also: run, with.

register (pkgname, namel [, name2, ...])

Defines short names for a package. It enters the strings namel (and name?2, etc. if
given) info the table pkgname.loaded, so that if you inifialise a package with the
with function, those names name, can be used as short names for package
functions instead of the fully written function names.

S0, instead of later calling a function by "pkgname.name(arguments)' you may use
the shortcut "name(arguments)”. See with for more deftails.

This is short for insert namel [, name2, ...] info pkgname.loaded. If a name is
already included in the table, register does not add it.

_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>'

See also: _EnvRelease.

remember (func)
remember (func, tab)

remember (func, null)

Administrates remember tables.

In the first form, the remember table stored to procedure func is refurned. See rget
for more information.

In the second form, remember adds arguments and returns to the remember table
of function func . If the remember table of func has not been initialised before,
remember creates it. If there are already values in the remember table, they are
kept and not deleted.

If func has only one argument and one return, the function arguments and returns
are passed as key~value pairs in table tab .

agena >> 109

If func has more than one argument, the arguments are passed in a table. If func
has more than one return, the returns are passed in a table, as well.

Valid calls are:

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); #one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]; # two arguments 1, 2 & one return 3

In the third form, by explicitly passing null as the second argument, the remember
table of func is destroyed and a garbage collection run to free up space occupied
by the former rtable.

remember always returns null. It is written in the Agena language and included in
the library.agn file.

See chapter 6.14 for examples. See also: defaults.

remove (f, 0 [, ...])

Returns all values in table, set, or sequence o that do not satisfy a condition
determined by function f, as a new table, set, or sequence. The type of return is
determined by the type of second argument.

If the funcfion has only one argument, then only the function and the
table/set/sequence are passed to remove.

>remove(<< x ->x>1>> 1, 2, 3]):
1~-1

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

>remove(<< X,y ->x>y>>1[1,2,3],1): #1 fory
1~1

See also: select, map, zip.

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.q. package tables assigned, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restart, all values in the Agena environment are
unassigned including the environment variable G, but except of origG and
_EnvAgenaPath. Then all entries in _orgG are read and assigned to the new

110 7 Standard Libraries

environment. After this, the library base file agena.lib and thereafter the initialization
fle agena.ini - if present - are read and executed. Finally, restart runs a garbage
collection.

The retumn of the function is false if evaluation of _orgG failed because it is no
longer a table (which should never happen). Otherwise, the return is true.

rget (func [, option])

Returns the contents of the current remember table or read-only remember table of
procedure func . If any value for option is given, the internal remember table
including all the hash values are returned.

> fib ;= proc(n) is

> assume(n >=0);

> return fib(n-2) + fib(n-1)
> end;

> remember(fib, [0~0, 1~1]);

> rget(fib):
[[0] ~ [0], [1] ~ [1]]

You cannot destroy the internal remember table by changing the table returned by
rget.

right (p)
Returns the right operand of a pair.

See also: left.

rinit (func)

Creates a remember table (an empty table) for procedure func . The procedure
must have been written in the Agena language; reminisce that rtables for C AP
functions are not supported and that in these cases the function quits with an error.

If there is already a rememiber function for func , it is overwritten. rinit returns null.

roinit (func)

Creates a read-only remember table (an empty table) for procedure func , which
may be either a C function or an Agena procedure.

If there is already a rememiber function for func , it is overwritten. roinit returns null.

agena >> 111

rset (func, arguments, returns)

The function adds one (and only one) function-argument-and-retums "pair’ to the
already existing remember table or read-only remember table of procedure func .
arguments Must be a table array, returns mMust also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding resulf(s)
are replaced with returns

Given a function f := << x -> x >> for example, valid calls are:

rset(f, [1], [2]) ; rset(f, [1, 2], [2 D; rset(f, [1], [1, 2])

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contents of the standard input (stdin). Retuns all
values retumned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

save (o, fn)

Saves an object o of any type into a binary file denoted by file name n .

The function is writfen in the Agena language and included in the library.agn file.

See also: read, debug.doubleendiantest .

select (f, o[, ...])

Returns all values in table, set, or sequence o that satisfy a condition determined by
function f. The type of return is determined by the type of second argument.

If the function has only one argument, then only the function and the object are
passed to select.

> select(<< x->x>1>>[1, 2, 3)):
2~2
3~3

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

>select(<< x,y->x>y>>{1,2,3} 1) #1 fory
3
2

If present, the function also copies the metatable of o to the new structure.

112 7 Standard Libraries

See also: remove, map, zip.

setfenv (f, table)

Sefts the environment fo be used by the given function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling seffenv. setfenv returns the given function.

As a special case, when f is O setfenv changes the environment of the running
thread. In this case, setfenv retumns no values.

setmeta (table, metatable)

setmetatable (table, metatable)

Sets the metatable for the given table, set, sequence, or pair. (You cannot change
the metatable of other types from Agena, only from C.) If metatable is null,

removes the metatable of the given table. If the original metatable has a
' _metatable’ field, raises an error.

This function returns table.

settype (0 [, ...], str)
settype (o [, ...], null)
In the first form the function sets the type of one or more procedures, sequences,

tables, sefs, or pairs o to the name denoted by string str. gettype and typeof will
then return this string when called with o.

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will retun the basic type of o.

If o has no _tostring ~ mMetamethod, then Agena's pretty printer outputs the object
in the form str..'("..<elements>..")' instead of the standard 'seq('..<elements>

) Or '<element>:<element>' string.

Note that the fry statement does not handle user-defined types.

See also: gettype.

size (v)

With tables, the operator returns the numioer of key~value pairs in table v.

With sefs and sequences, the operator returns the number of items in v. With strings,
the operator returns the number of characters in string v, i.e. the length of v.

agena >> 113

sort (o [, comp])

Sorts table or sequence elements in a given order, in-place, from o[1] to o[n], where
n is the length of the sfructure. If comp is given, then it must be a function that
receives two structure elements, and returns true when the first is less than the
second (so that not comp(a[i+ 1].q([i]) will be true after the sort). If comp is not given,
then the standard operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort.

time ()

Returns the time till start-up in seconds as a number.

toSeq (s)

If s is a string, the function will split it into its characters and return them in a
seguence with each character in s as a sequence value, and in the same order as
the characters in s.

If s is a table, the function puts all its values - but not its keys - into a sequence.
If s is a set, the function puts all its items into a sequence.

toTable (s)

If s is a string, the function splits it into its characters, and returns them in a table with
each character in s as a table value in the same order as the characters in s.

If s is a sequence or set, the function converts it info a table.

type (v)

This operator returns the basic type of its only argument, coded as a string. The
possible results of this function are 'nul’ (a string, not the value null), 'number' ,
'string’ , '‘boolean’ 'table’ , ‘'set , ‘'sequence' , ‘'pair' , 'complex’,
'‘procedure’ , 'thread' , and 'userdata’

If v is a sequence, pair, or procedure with a user-defined type, then type always
retuns the basic type, i.e. 'sequence’ Or 'pair' , Of 'procedure’ , respectively.
See also: typeof.

114 7 Standard Libraries

unpack (list [, i [, jID
Returns the elements from the given table or sequence. This function is equivalent
fo

return list[i], list[i+1], ---, list[j]

except that the above code can be written only for a fixed number of elements. By
default, iis 1 and jis the length of the list, as defined by the length operator.

used ()

Returns the total memory in use by Agena in Kobytes. It is a shortcut for ge('count')
The function is written in the Agena language and included in the library.agn file.

typeof (v)

This operator returns the user-defined type - if it exists - of its only argument, coded
as a string.

A special type can be defined for procedures, pairs, sets, and sequences with the
seftype function. If there is no user-defined type for v, then the basic type is

returned, i.e. 'null (a string, not the value null), ‘number' , 'string’ , ‘boolean’ ,
‘table’ , 'set’ , 'sequence’ , ‘pair , '‘complex' , 'procedure’ , 'thread’ , and
‘'userdata’

See also: type.

whereis (tbl, x)

Returns the indices for a given value x in table t as a new table. The function is
written in the Agena language and included in the library.agn file.

with (packagename, [keyl, key2, ...])
Assigns short names to package procedures such that:

name = packagename.name
The function works as follows:

* In both forms, with first fries to load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so in UNIX and .dil in Windows, or both in a text file
and in a dynamic link library. In a first step, the function looks into the lib
folder of the main Agena library 1o find the package files. If it did not find it in
the lib folder, it switches t0 the packagename folder in the main Agena
directory and fries to load it from there. Note that the package files must
reside either in the lib or in the packagename folder.

agena >> 115

If either the Agena library or the C library could not be found, with proceeds
without errors. If both are missing, an error is refurned.

Next, with fries to find a package initialisation procedure. If a procedure
named <packagename>.init" is present in your package then it is
executed if the package has been found successfully.

In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

You may optionally assign short names to either all or only specific
procedures. If you only want define short names to some of the functions,
define a table <packagename>.loaded and include the respective
function names as strings. If the table <packagename>.loaded is not
present, with assigns short names to all keys in <packagename>.

Note that if packagename.name is Not of type procedure, a short name is not
created for this object.

If there is a table <packagename>.loaded, then with prints only those
values included in this table. If <packagename>.loaded does not exist, all
keys in <packagename> are printed.

An example: If your package is called "agenapackage’, then the short
names to be printed are included in:

agenapackage.loaded = ['run’, 'dosomethingT;

If you would like to display a welcome message, put it info the string
<packagename>.initstring. It is displayed with an empty line before and
after the text. An example:

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \
December 24, 2008\n’;

In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table
<packagename>.

As opposed to the first version, with does not print any short names or
welcome messages on screen.

Further information applying to both forms:

The function refurns a table of all short names assigned .

If the global enviionment variable EnvWithVerbose is set to false, no
messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome

116 7 Standard Libraries

message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table EnvProtected), it cannot be overwritten
by with and a proper message is displayed on screen. You can control
which names are protected by modifying the contents of _EnvProtected.

In Windows, make sure that you have set the environment variable
AGENAPATH fo the main folder where Agena resides and that the path does
not end with a slash. You my set the variable with the following statement,

e.g.

SET AGENAPATH=d:/agena

if Agena is installed in the dlagena folder. In UNIX, Agena by default
searches in the /usriagena folder if AGENAPATH has not been set.

Note that with executes any statements (and thus also any assignment)
included in the file <packagename>.agn.

The function is written in the Agena language and included in the library.agn file.

See also: readlib, run.

write ([fh,] vl [, v2 ...][, delim ~ <str>])

This function prints a sequence of numbers or strings v to the file denoted by the
handle fh, or to stdout (i.e. the console) if fh is not given. By default, no character is
inserted between neighbouring values. This may be changed by passing the option
'delim':<str> (e.g. 'delim"|' or delim~'[") as the last argument to the function
with <str> being a string of any length. The function is an inferface to io.write.

writeline ([fh,] v1 [, v2 ...] [, delim ~ <str>])

This function prints a sequence of numbers or strings v followed by a newline to the
fle denoted by the handle fh, or to stdout (i.e. the console) if fh is not given. By
default, no character is inserfed between neighbouring values. This may be

changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut to 'delim":<str> is delim ~ <str> . The function

is an interface to io.writeline .

xpcall (f, err)
This function is similar to pcall , except that you can set a new error handler.
xpcall calls function f in protected mode, using er as the error handler. Any error

inside f is not propagated; instead, xpcall catches the error, calls the err function with
the original error object, and returns a status code. lts first result is the status code (a

agena >> 117

boolean), which is true if the call succeeds without errors. In this case, xpcall Qlso
retuns all results from the call, after this first result. In case of any error, xpcall returns
false plus the result from err.

zip (f, s1, s2)

This function zips together either two sequences or two tables by applying the
function f to each of its respective elements. The result is a new sequence or table
s where each element s[k] is determined by s[k] : = f(s1[K], s2[K]).

sl and s2 must have the same numiber of elements. If you pass tables, they must
be table arrays, and not dictionaries.

If seql Or seq2 have user-defined types or metatables, they are copied 1o the
resulting structure, as well.

See also: map, select, remove.

118 7 Standard Libraries

7.2 Coroutine Manipulation

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Agena function. Retumns this new
coroutine, an object with type 'thread'.

coroutine.resume (co [, vall, ---])

Starts or continues the execution of coroutine co. The first fime you resume a
coroufine, it starfs running its body. The values vall, --- are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values vall,
-+ are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed
fo yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any eror, resume returns false plus the eror
message.

coroutine.running ()

Returns the running coroutine, or null when called by the main thread.

coroutine.status (co)

Returns the status of coroutine co, as a sting: 'running', if the coroutine is running
(that is, it called status); 'suspended!, if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Agena function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Retuns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (---)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments 1o yield are passed as
extra results to resume.

agena >> 119

7.3 Modules

The package library provides basic facilities for loading and building modules in
Agena. It exports two of its functions directly in the global environment: require and
module. Everything else is exported in a table package .

module (name [, ---])

Creates a module. If there is a table in package.loadediname] , this fable is the
module. Otherwise, if there is a global table t with the given name, this table is the
module. Otherwise creates a new table t and sets it as the value of the global
name and the value of package.loadediname]. This function also initialises
t. NAME with the given name, 1. M with the module (t itself), and t. PACKAGE with
the package name (the full module name minus last component; see below).
Finally, module sets t as the new environment of the current function and the new
value of package.loaded[name], so that require returns 1.

If name is a compound name (that is, one with components separated by dots),
module creates (or reuses, if they adlready exist) tables for each component. For
instance, if name is a.b.c, then module stores the module table in field ¢ of field b
of global a.

This function may receive optional options after the module name, where each
option is a function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the table
package.loaded to determine whether modname is already loaded. If it is, then
require returns the value stored at package.loaded[modname]. Otherwise, it fries to
find a loader for the module.

To find a loader, first require queries package.preload[modname]. If it has a value,
this value (which should be a function) is the loader. Otherwise require searches for
a Agena loader using the path stored in package.path. If that also fails, it searches
for a C loader using the path stored in package.cpath. If that also fails, it fries an
all-in-one loader (see below).

When loading a C library, require first uses a dynamic link facility to link the
application with the library. Then it tries to find a C function inside this library 1o be
used as the loader. The name of this C functfion is the string ‘'luaopen '
concatenated with a copy of the module name where each dot is replaced by an
underscore. Moreover, if the module name has a hyphen, its prefix up to (and
including) the first hyphen is removed. For instance, if the module name is a.vl-b.c,
the function name will be luaopen b c.

If require finds neither an Agena library nor a C library for a module, it calls the
all-in-one loader. This loader searches the C path for a library for the root name of

120 7 Standard Libraries

the given module. For instance, when requiring a.b.c, it will search for a C library for
a. If found, it looks into it for an open function for the submodule; in our example,
that would be luaopen _a b c. With this facility, a package can pack several C
suomodules info one single library, with each submodule keeping its original open
function.

Once a loader is found, require calls the loader with a single argument, modname.
If the loader returns any value, require assigns it to package.loaded[modname]. If
the loader retuns no value and has not assigned any value to
package.loaded[modname], then require assigns true to this entry. In any case,
require returns the final value of package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for
the module, then require signals an error.

package.cpath
The path used by require to search for a C loader.

Agena initialises the C path package.cpath in the same way it initfialises the Agena
path package.path, using the environment variable LUA_CPATH (plus another
default path defined in agnconf.h).

package.loaded

A table used by require to control which modules are already loaded. When you
require a module modname and package.loaded[modname] is not false, require simply
returns the value stored there.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library lioname . Inside this library, looks
for a function funcname and returns this function as a C function. (So, funchame
must follow the protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module
system. Unlike require, it does not perform any path searching and does not
automatically adds extensions. lioname must be the complete file name of the C
library, including if necessary a path and extension. funcname must be the exact
name exported by the C library (which may depend on the C compiler and linker
used).

This function is not supported by ANSI C. As such, it is only available on some
platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that
support the difcn standard).

agena >> 121

package.path
The path used by require 1o search for an Agena loader.

At start-up, Agena initialises this variable with the value of the environment variable
LUA_PATHor with a default path defined in agnconf.h , if the environment variable is
not defined. Any ';;' in the value of the environment variable is replaced by the
default path,

A path is a sequence of templates separated by semicolons. For each template,
require will change each interrogatfion mark in the femplate by filename, which is
modname with each dot replaced by a "directory separator' (such as "/" in Unix);
then it will try fo load the resulting file name. So, for instance, if the Agena path is

"./?.agn;./?.Ic;/usr/local/?/init.agn’

the search for an Agena loader for module foo will try to load the files ./foo.agn,
Jfoo.lc, and /ust/local/foo/init.agn, in that order.

package.preload

A table to store loaders for specific modules (see require).

package.seeall (module)

Setfs a metatable for module with its __index field refering to the global environment,
so that this module inherits values from the global environment. To be used as an
option to function module.

122 7 Standard Libraries

7.4 String Manipulation

A nofe in advance: All operators and strings package functions know how to handle
many diacritics properly. Thus, the lower and upper operators know how to convert
these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

aAaAaAaAalRae EEaA
BEEGEEEE
irititiiyyy
00600080 6006O0
auouauuau
cCANODpPPR

7.4.1 Kerel Operators and B asic Library Functions

replace (sl, s2, s3)
replace (sl, struct)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3.

In the second form, the operator receives a string s1 and a table or sequence of
one or more string pairs of the form s2:s3 and replaces all occurrences of s2 in
string s1 with the corresponding string s3. Thus you can replace multiple patterns
with only one call to replace.

The return is a new string.

s1 split s2

Splits the string s1 info words. The delimiter is given by string s2, which may consist of
one or more characters. The retun is a table.

abs (s)

With strings, returns the numeric ASCIl value of the given character s (a string of
length 1).

slin_s2

This binary operator checks whether the string s2 includes s1 and retums its position
as a number.

agena >> 123

lower (s)

Receives a string and returns a copy of this string with all uppercase letters (‘A' to 'Z'
plus the above mentioned diacritics) changed to lowercase ('a' to 'z' and the above
mentioned diacritics). All other characters are left unchanged.

size (s)

With a string s returns its length, i.e. the number of characters in s.

toNumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a
string convertible to a number, then toNumber retuns this number; otherwise, it
returns e if e is a string, and fail otherwise. The function recognises the strings
'undefined’ and infinity' properly, i.e. it converts them to the corresponding
numeric values undefined and infinity, respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 7
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part (see 2.1). In other bases, only unsigned integers
are accepted. If an opftion is passed, 'undefined' and infinity’ are not
converted 1o numbers; and if e could not be converted, fail is returned.

toString (e)

Receives an argument of any fype and converts it to a sfring in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' fostring' field, then toSting calls the corresponding
value with e as argument, and uses the result of the call as its result.

trim (s)

Returns a new string with all leading, frailing and excess embedded white spaces
removed.

upper (s)

Receives a string and returns a copy of this string with all lowercase letters (‘' to ‘2
plus the above mentioned diacritics) changed to uppercase (A' to 'Z' and the
above mentioned diacritics). All other characters are leff unchanged.

124 7 Standard Libraries

7.4.2 The strings Library

The strings liorary provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not af 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings . It Also sets a
metatable for strings where the __index field pointfs to the strings table. Therefore,
you can use the string functions in object-oriented style. For instance,
strings.repeat(s, i) can be written as s:repeat(i).

strings.diamap (s)

The function corrects problems in the Solaris, Linux, OS/2, Windows, and DOS
consoles with diacritics and ligatures read in from a text file (even .agn program
files) by mapping them to their correct character codes. It takes a strings s, applies
the mapping, and refuns a new sting. All other characters are returned
unchanged.

Example:

> strings.diamap('AEIOU-I_&+1"):
AEIOUAOUEAD

Note that the function does not convert all existing special fokens.

strings.dump (function)

Returns a string containing a binary representation of the given function, so that a
later loadstring on this string returns a copy of the function. function mMust be an
Agena function without upvalues.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starfs and ends; otherwise, it returns null. A
third, optional numerical argument init specifies where to start the search; its default
value is 1 and may be negative. A value of true as a fourth, optional argument
plain turns off the pattern matching facilities, so the function does a plain "find
substring" operation, with no characters in pattern being considered "magic". Note
that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: in operator, strings.seek.

agena >> 125

strings.format (formatstring, --+)

Returns a formatted version of its variable number of arguments following the
descripfion given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, I, L, n, p, and h are not supported and
that there is an extra option, . The g option formats a string in a form suitable to be
safely read back by the Agena interpreter. the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call

strings.format('%q', ‘a string with "quotes" and \ n new line")

will produce the string:

"a string with \"quotes\" and \
new line"

The options ¢, d, E, e, f, g, G, i, 0, u, X, and x all expect a number as argument,
whereas g and s expect a string.

This function does not accepf string values containing emibedded zeros.

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s.

If pattern specifies no captures, then the whole match is produced in each call.
As an example, the following loop

s :='hello world from Lua'

for w in strings.gmatch(s, '%a+") do
print(w)

od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

create table t;

s := 'from=world, to=Lua'

for k, v in strings.gmatch(s, '(%w+)=(%w+)") do
tk] :=v

od

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced by
a replacement string specified by repl, which may be a string, a table, or a
function. gsub also returns, as its second value, the total numiber of subbstitutions
made.

126 7 Standard Libraries

If repl is a string, then its value is used for replacement. The character % works as an
escape character. any sequence in repl of the form %n, with n between 1 and 9,
stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retumned by the table query or by the function call is a sting or a
numiber, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur.
For instance, when nis 1 only the first occurrence of pattemn is replaced.
Here are some examples:

X := strings.gsub(‘hello world', '(%w+)', '%1 %1")
--> x = 'hello hello world world'

X := strings.gsub(‘hello world', "%w+'", '%0 %0', 1)

-->x = 'hello hello world'

X := strings.gsub(‘hello world from Lua’, '(%w+)%s *(%w+)', '%2 %1")
--> x ='world hello Lua from'

X := strings.gsub(‘home = $HOME, user = $USER’, ‘% $(%w+)', 0s.getenv)
--> x = 'home = /home/roberto, user = roberto’

X := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)

return loadstring(s)()

end)

—>X='4+5=9

local t := [name~'lua’, version~'5.1"]
X = strings.gsub(‘$name%-$version.tar.gz', '%$(Yow+), t)
-->x = 'lua-5.1.tar.gz'

strings.hits (s, pattern)

Returns the number of occurrences of substring pattern in string s. The function does
not support regular expressions.

agena >> 127

strings.isAbbrev (str, pattern)

Detfermines whether a string str is abbreviated by the substring pattern , i.e. whether
pattern fits entirely to the beginning of the string str . The function returns true or
false. The length of pattern ~ must always be less than that of str .

If str oOr pattern are empty strings, the function returns false.

See also: strings.isEnding .

strings.isAlpha (s)

Checks whether the string s consists entirely of alphabetic letters and retun true or
false.

strings.isAlphaNumeric (s)

Checks whether the string s consists entirely of numbers or alphabetic lefters and
return true or false.

string.isAlphaSpace (s)

Checks whether the string s consists entirely of alphabetic letters and/or a white
space and return frue or false.

strings.isEnding (str, pattern)

Detfermines whether a string str is ending in the substring pattern , i.e. whether
pattern ~ fits entirely to the end of the string str . The function retumns true or false. The
length of pattern must always be less than that of str .

If str oOr pattern are empty strings, the function returns false.

she function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isAbbrev.

strings.isLatin (s)

Checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

strings.isLowerAlpha (s)

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and retumns true or false. If s is the empty string, the result is always false.

128 7 Standard Libraries

strings.isLowerLatin (s)

Checks whether the string s consists entirely of the characters 'a' to 'z, and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isUpperLatin .

strings.isMagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' to
'Z','d' to 'Z', and the diacritics listed at the top of this chapter.

strings.isNumber(s)

Checks whether the string s consists entirely of the digits O to 9 and returns true or
false.

strings.isNumberSpace (s)

Checks whether the string s consists entirely of the digits O to 9 or white spaces and
returns true or false.

strings.isUpperAlpha (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and retumns true or false. If s is the empty string, the result is
always false.

See also: strings.isLowerAlpha.

strings.isUpperLatin (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isLowerLatin.

strings.Itrim (s [, c])

Returns a new string with all leading white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all leading
characters given by ¢ are removed.

See also: trim operator, strings. ririm.

strings.match (s, pattern [, init])

Looks for the first mafch of pattern in the string s. If it finds one, then match returns
the captures from the pattemn; otherwise it returns null. If pattern specifies no

agena >> 129

captures, then the whole match is returned. A third, optional numerical argument
init specifies where fo start the search; its default value is T and may be negative.

strings.put (strl, n, str2)

Inserts a new stfring str2 into the string str1 at the given position n, substituting the
respective character in str1 with the new string str2 - which may consist of zero, one
or more characters. The retun is a new string. If str2 is the empty string, the
character in strl is deleted.

This funcftion is more convenient than using a mix of substring and concatenation
operators and is as fast as them.

See also: strings.remove.

strings.remove (str, pos, len)

Starting from string position pos, the function removes len charcters from string str .
The return is a new string.

It is not an error if len is greater than the actual length of str . In this case all
characters starting at position pos are deleted.

See also: strings.put.

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s.

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rseek (s, pattern [, init])

Starting from the right end and always running to its leff beginning, the function looks
for the first match of pattern in the string s. If it finds a match, then find returns the
index of s where this occurrence starts with respect to its left beginning; otherwise, it
returns null.

A third, optional numerical argument init specifies where fo start the search; ifs
default value is size pattern and may be negative. If init is positive, the search
begins from the init 's character from the left (and also runs to the left). If init is
negative, the search begins from the |init |'s character from the right (and runs to
the left, also).

The function is useful for example in linguistic research to search for inflectional
endings.

130 7 Standard Libraries

See also: in operator, sting.find, strings.seek.

strings.rtrim (s)

Retuns a new string with all trailing white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all trailing
characters given by ¢ are removed.

See also: tim operator, strings.rim .

strings.seek (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the index of s where this occurrence starts; otherwise, it returns null. A third, optional
numerical argument init specifies where to start the search; its default value is 1
and may be negative. Contrary fo strings.find, the function does not support
pattern matching facilities but is around 8 % faster. If you have to search a string
from its beginning, use the faster in operator.

See also: in operator, string.find, strings.rseek.

strings.toChars (--+)

Receives zero or more integers and returns a string with length equal to the numlber
of arguments, in which each character has the internal numerical code equal 1o ifs
corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

strings.words (s [, delim])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and right borders. However, the user can
define any other delimitor by passing a character delim (of type string) as a second
argument. The return is a number.

7.4.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

X: (Where x is not one of the magic characters ~$()%.[1*+-?) represents the
character x itself.

* .. (a dof) represents all characters.

* %a: represents all letters.

* %c: represents all control characters.

* %d: represents all digits.

agena >> 131

%l: represents all lowercase letters.

%p: represents all punctuation characters.

%s. represents all space characters.

%U: represents all uppercase letters.

%w: represents all alphanumeric characters.

%x: represents all hexadecimal digits.

%z: represents the character with representation O.

%x: (where x is any non-alphanumeric character) represents the character x.
This is the standard way fo escape the magic characters. Any punctuation
character (even the non magic) can be preceded by a '%' when used to
represent itself in a pattern.

[set]: represents the class which is the union of all characters in setf. A range
of characters may be specified by separating the end characters of the
range with a -'. All classes %x described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w] (or [%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
ocftal digits plus the lowercase lefters plus the -' character.

The interaction between ranges and classes is not defined. Therefore,
patterns like [%0-z] or [0-%%] have no meaning.

[* set] : represents the complement of set, where set is interpreted as above.

For all classes represented by single lefters (%a, %c, etc.), the corresponding
uppercase lefter represents the complement of the class. For instance, %S
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent tO %l.

Paftern ltem:

A pattern item may be

a single character class, which matches any single character in the class;

a single character class followed by *', which matches 0 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

a single character class followed by -, which also matches 0 or more
repetitions of characters in the class. Unlike *', these repetition items will
always match the shorfest possible sequence;

a single character class followed by 2, which matches 0 or 1 occurrence of
a character in the class;

%n, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

132 7 Standard Libraries

* %bxy, where x and y are two distinct characters; such item matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y. the ending vy is the first y where the count reaches 0. For instance, the item
%b() Matches expressions with balanced parentheses.

Pattern:

A pattern is a sequence of patten items. A »' at the beginning of a pattern
anchors the match at the beginning of the subject sting. A 'S' at the end of a
patftern anchors the match at the end of the subject string. At other positions, ' ™'
and '$' have no special meaning and represent themselves.

Captures:

A pattern may contain sub-patterns enclosed in parentheses;, they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numibered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*)), the part of the
sting matching 'a*(.)%w(%s*)' is stored as the first capture (and therefore has
number 1); the character matching "' is captured with number 2, and the part
matching '%s*' has number 3.

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattermn '(Jaa()' on the string 'flaaap’, there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

agena >> 133

/.5 Table Manipulation

7.5.1 Kermnel O perators

The following functions have been built into the kernel as unary operators.

copy (table)

The operator copies the entire contents of a table into a new table. If the table
contains tables itself, those tables are also copied properly (by a "deep copying
method). Metatables and user-defined types are copied, 100.

filled (table)

Checks whether table contains at least one element. The return is true or false. The
function works on dictionaries, as well.

join (table)
Concatenated all string values in the table in sequential order and returns a string.

map (f, table [, ...])

Maps the function f on all elements of a table. See map in chapter 7.1 for more
information.

gsadd (obj)

Raises all numeric values in table or sequence obj to the power of 2 and sums up
these powers. The retun is a numiber. If obj is empty or consists entirely of
non-numbers, null is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are ignored.

sadd (obj)

Sums up all numeric values in table or sequence obj. The return is a number. If obj is
empty or consists entirely of non-numbers, null is returned. If the object contains
numibbers and other objects, only the numbers are added. Entries with non-numeric
keys are ignored.

unique (table)

The unique operator removes all holes (“missing keys') in a table and removes
multiple occurrences of the same value, if present. The retun is a new table with
the original table unchanged.

134 7 Standard Libraries

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - true, {1, 2} xsubset{1,1,2,2,3,3 } - true.

tablel = _ table2

This equality check of two tables tablel , table2 first tests whether tablel and table2
point 10 the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether tablel and table2 contain the same
values without regard to their keys, and returns true or false. In this case, the search
is quadratic.

tablel <>__ table2

This inequality check of two tables tablel , table2 first tests whether tablel and
table2 do not point to the same table reference in memory. If so, it returns frue and
quits.

If not, the operator then checks whether tablel and table2 do not contain the
same values, and retumns true or false. In this case, the search is quadratic.

cin_ table

Checks whether table contfains the value ¢ and returns true or false. The search is
linear.

tablel intersect table2

Searches all values in tablel that are also values in table2 and returns them in a
new table. The search is quadratic, so you may use tables.bintersect instead if you
want fo compare large tables since bintersect performs a binary search.

tablel minus table2

Searches all values in tablel that are not values in table2 and returns them as a
new table. The search is quadratic, so you may use tables.bminus instead if you
want to compare large tables since bminus performs a binary search.

tablel subset table2

Checks whether all values in tablel are included in table2 and returns true or false.
The operator also returns true if tablel = table2 . The search is quadratic.

tablel union table2

Concatenates two tables tablel and table2 simply by copying all its elements -
even if they occur multiple times - to a new table.

agena >> 135

tablel x _subset table2

Checks whether all values in tablel are included in table2 and whether table2
contains at least one further element, so that the result is always false if tablel =
table2 . The search is quadratic.

7.5.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables .

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length' of a table we mean the result of
the length operator.

tables.bintersect (tablel, table2 [, option])

Returns all values of tablel that are also values in table2 . The functions performs a
binary search in table2 for each value in tablel . If NO option is given, table2 is
sorted before starting the search. If you pass an option of any value then table2
should already have been sorted, for no corect results would be returned
otherwise.

With larger tables, this function is much faster than the intersect operator.

The function is written in the Agena language and included in the library.agn file.

tables.bisEqual (s1, s2 [, option])

Determines whether the table or sequence s1 contains the same values as the
sequence or table s2. The functions performs a binary search in s2 for each value in
s1. If no option is given (any value), s2 is sorted before starting the search. If you
pass an option of any type then s2 should already have been sorted, for no correct
results would be returned otherwise.

With larger tables, this function is much faster than the = operator.

The function is written in the Agena language and included in the library.agn file.

tables.bminus (tablel, table2 [, option])

Returns all values of tablel that are not values in table2 . The functions performs a
binary search in table2 for each value in tablel . If NO opfion is given, table2 s
sorted before starting the search. If you pass the option then table2 should already
have been sorted, for no correct results would be returned otherwise.

With larger tables, this function is much faster than the minus operator.

136 7 Standard Libraries

The function is written in the Agena language and included in the library.agn file.

tables.duplicates (table, option)

Returns all the values that are stored more than once to the given table, and returns
them in a table. Each duplicate is retfurned only once. If option is not given, the
table is sorted before evaluation since this is needed 1o evaluate all duplicates. The
original table is left untouched, however. If an option of any type is given, the
function assumes that the table has been already sorted.

The function is written in the Agena language and included in the library.agn file.

tables.indices (tbl)

Returns all keys of a table as a new table. See also: tables.getvalues .

tables.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole fable.)

tables.put (table, [pos,] value)

Inserts element value at position pos in table, shiffing up other elements to open
space, if necessary. The default value for pos is n+1, where n is the length of the
table, so that a call tables.put(t,x) inserts x at the end of table t.

Use the insert element into table statement if you want to add an element at the
current end of a table.

tables.remove (table [, pos])

Removes from table the element at position pos, shiffing down other elements to
close the space, if necessary. Returns the value of the removed element. The
default value for pos is n, where n is the length of the table, so that a call
tables.remove(t) removes the last element of table 1.

Use the delete element from tfable statement if you want to remove any
occurence of the table value element from a table.

agena >> 137

tables.writeTable (table, filename [, delim])

Writes all values of table table to a text file denoted by filename with one value in
each line. If you pass a delimiter delim (a string) as the third argument, then the
function writes all key~value pairs where the keys and values are separated by the
given delimiter.

The function is writfen in the Agena language and included in the library.agn file.

138 7 Standard Libraries

7.6 Set Manipulation
The following functions have been built into the kernel as unary operators.

copy (set)

The operator copies the entire contents of a set into a new set. If the set contains
other setfs - even nested ones-, those setfs are also copied properly (by a "deep
copying” method). Metamethods if present, are also copied.

filled (set)
Checks whether a set contains at least one element. The retumn is true or false.

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - true, {1, 2} xsubset{1,1,2,2,3,3 } - true.

setl = _ set2

This equality check of two sefs setl , set2 first tests whether setl and set2 point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether setl and set2 contain the same items,
and returns true or false. In this case, the search is linear.

tablel <>__ table2

This inequality check of two tables set1 , set2 first fests whether set1 and set2 do not
point to the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether setl and set2 do not contain the same
items, and returns true or false. In this case, the search is linear.

cin__ set

Checks whether set confains the item ¢ and returns frue or false. The search is
constant.

setl intersect set2

Searches all items in setl1 that are also items in set2 and retumns them in a set. The
search is linear.

agena >> 139

setl minus__ set2

Searches dll items in setl that are not items in set2 and returns them as a set. The
search is linear.

setl subset set2

Checks whether all items in setl are included in set2 and returns true or false. The
operator also returns tfrue if set1 = set2 . The search is linear.

setl union set2

Concatenates two sets setl and set2 simply by copying all its items 1o a new set.

setl x _subset set2

Checks whether all items in setl are included in set2 and whether set2 contains atf
least one further item, so that the result is always false if setl1 = set2 . The search is
linear.

140 7 Standard Libraries

7.7 Segquence Manipulation

With the exception of map, the following functions have been built into the kernel
as unary operators.

copy (seq)

The operator copies the entire contents of a sequence into a new table. If the
seguence contains sequence itself, those sequence are also copied properly (by a
“deep copying' method). Metatables and user-defined types are copied, foo.

filled (seq)
Checks whether sequence contains at least one element. The return is true or false.

join (seq)

Concatenated all string values in the sequence in sequential order and returns a
string.

gsadd (seq)

Raises all numeric values in sequence seq to the power of 2 and sums up these
powers. The return is a number. If seq is empty or consists entirely of non-numbers,
null is retumned. If the sequence contains numbers and other values, only the
powers of the numbers are added.

sadd (seq)

Sums up all numeric values in sequence seq. The return is a number. If seq is empty
or consists entirely of non-numbers, null is returned. If seq contains numibers and
other values, only the numbers are added.

unique (seq)

With sequences, the unique operator removes multiple occurrences of the same
item, if present. The retun is a new sequence with the original sequence
unchanged.

agena >> 141

The following functions have been built info the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(l,
1) =seq(1) — true, seq(l, 2) xsubset seq(1, 1, 2, 2, 3, 3) - true.

seql = seq2

This equality check of two sequences seql, seq2 first tests whether seql and seq2
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether seqi and seq2 contain the same values
without regard to their keys, and retumns true or false. In this case, the search is
quadratic.

seql <> seq2

This inequality check of two sequences seql, seq2 first tests whether seql and seq2
do not point to the same sequence reference in memory. If so, it returns true and
quits.

If not, the operator then checks whether seqi and seq2 do not contain the same
values, and returns true or false. In this case, the search is quadratic.

cin__seq

Checks whether seq contains the value ¢ and retumns true or false. The search is
linear.

seql intersect seq2

Searches all values in seql that are also values in seq2 and returns them in a
seqguence. The search is quadratic.

seql minus _seq2

Searches all values in seql that are not values in seq2 and returns them as a
seguence. The search is quadratic.

seql subset seq2

Checks whether all values in seql are included in seq2 and returns true or false. The
operator also returns true if seql = seq2 . The search is quadratic.

seql union _ seq2

Concatenates two sequences seql and seq2 simply by copying all its elements -
even if they occur multiple times - t0 a new sequence.

142 7 Standard Libraries

seql x_subset seq2

Checks whether all values in seql are included in seq2 and whether seq2 contains
at least one further element, so that the result is always false if seql = seqg2. The
search is quadratic.

agena >> 143

7.8 Mathematical Functions

7.8.1 Kermnel O perators
The following functions have been built into the kemel as operators.

abs (x)

If x is a number, abs returns the absolute value of x. Complex numbers are
supported.

arctan (x)

Arc tangent (x in radians). Complex numbers are supported.

cos (x)

Cosine (x in radians). Complex numbers are supported.

entier (x)

Rounds x downwards to the nearest infeger. Complex numbers are supported.
See also: math.ceil.

even (X)

Checks whether x is even. Returns true if x is even, and false otherwise.

exp (x)
Exponential function, returns the value €*. Complex numbers are supported.

finite (x)

Checks whether x is not plus or minus infinity, and is not undefined (NaN). Returns
true if x is @ "number' and false otherwise.

gammaln (x)

Computes In T x. If x is nonpositive, the function returns undefined.

int (x)
Rounds x to the nearest integer towards zero.

In (x)

Natural logarithm of x. If x is nonpositive, the function returns undefined. Complex
numbers are supported.

144 7 Standard Libraries

sign (x)
Determines the sign of the number or complex value x. If X is a complex value, the
result is determined as follows:

 1,ifredl(x) > 0 orreadl(x) = 0 and imag(x) > O
e -1, ifreal(x) < 0 orreadl(x) = 0 and imag(x) < O
* 0 otherwise.

sin (x)

Sine (x in radians). Complex numbers are supported.

sqrt (X)
Square rooft of x.

If x is a number and negative, the function returns undefined.

With complex numbers, the operator returns the complex square roof, in the range
of the right halfplane including the imaginary axis.

tan (x)

Tangent (x in radians). Complex numbers are supported.

7.8.2 math Library

This library is an interface to the standard C math library. It provides all its functions
inside the table math.

math.approx (a, b [, eps])

Compares the two numibers a and b and checks whether they are approximately
equal using a simplified relative approximation algorithm developed by Donald H.
Knuth. If eps is omifted, EnvEps is used. (The algorithm checks whether the relative
error is bound to a given folerance eps.)

The function retumns true if a and b are considered equal or false otherwise.

math.arccos (x)

Returns the arc cosine of x (in radians). The function works on both numbers and
complex values.

agena >> 145

math.arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

math.arccoth (x)

Retuns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

math.arcsin (x)

Retuns the arc sine of x (in radians). The function works on both numbers and
complex values.

math.arcsinh (x)

Retumns the inverse hyperbolic sine of x (in radians). The function is implemented in
the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

math.arctanh (x)

Retuns the inverse hyperbolic tangent of x (in radians). The function is
implemented in the Agena language and included in the library.agn fle. The
function works on both numbers and complex values.

math.arctan?2 (y, X)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers.

math.argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
numiboer; if z is a number, the function returns O.

math.binomial (n, k)

Returns the binomial coefficient as a number. The function returns undefined, if n or
k are negative.

math.ceil (x)

Rounds upwards fo the nearest infeger larger than or equal to the number or
complex number x. See the entier operator for a function that rounds downwards to

146 7 Standard Libraries

the nearest integer. The function is implemented in the Agena language and
included in the library.agn file.

math.conj (z)

The conjugate x-I*y of the complex value z=x+I*y. If z is of type number, it is simply
returned.

math.cosh (x)

Returns the hyperbolic cosine of x. The function works on both numbers and
complex values.

math.cot (x)

Returns the cotangent -tan(Pi/2+x) as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numibers and complex values.

math.coth (x)

Retuns the hyperbolic cotangent 1/tanh(x) as a number. The function is
implemented in the Agena language and included in the library.agn file. The
function works on both numbers and complex values.

math.csc(x)

Returns the cosecant 1/sin(x) as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numbers and complex values.

math.diff (f, x [, eps])

Differentiates a function in one variable at the point x and returns a number. If eps is
not passed, the function uses an accuracy of the value stored to _EnvEps . You may
pass another numeric value for eps if necessary.

The function is implemented in the Agena language and included in the
library.agn file.

math.fact (n)

Returns the factorial of n, i.e. the product of the values from 1 10 n. If n is not an
infeger or if n is negatfive, the function returns undefined. The function is
implemented in the Agena language and included in the library.agn file. It
features a defaults remember table which you may extend by editing the
library.agn file.

agena >> 147

math.flip (z)

Swaps the real and imaginary parts of the complex value z = x + [*y and returns
the new complex number z' =y + x*I.

math.fmod (X, y)
Returns the remainder of the division of x by y, with X, y numiers.

math.frac (x)

Returns the fractional part of the number x, i.e. x - int(x). The function is implemented
in the Agena language and included in the library.agn file.

math.frexp (x)

Refturns m and e such that x = mZ2°, e is an integer and the absolute value of mis in
the range [0.5, 1) (or zero when x is zero).

math.gcd (a, b)

Returns the greatest common divisor of the numbers a and b as a number. The
function is implemented in the Agena language and included in the library.agn
file.

math.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a,] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accurarcy of eps = _EnVEps has been reached. You may pass another numeric
value for eps if necessary.

The function is implemented in the Agena language and included in the
library.agn file.

math.heaviside (x)

The Heaviside function. Returns O if X < O, undefined if x = 0, and 1 if x > 0. The
function is implemented in the Agena language and included in the library.agn
file.

math.hypot (x, y)

Returns sari(x*x + y*y) with x, y numbers. This is the length of the hypotenuse of a
right triangle with sides of length x and y, or the distance of the point (x, y) from the
origin. The function is slower but more precise than using sqrt. The refun is a
number.

148 7 Standard Libraries

math.irem (X, y)

Evaluates the remainder of an integer division x/y (with X, y two Agena numbers). The
return is a number. The remainder has the same sign as the numerator.

math.isPrime (x)

Returns true, if the integral number x is a prime number, and false otherwise.

math.lcm(a, b)

Returns the least common multiple of to numbers a and b as a number. The
function is implemented in the Agena language and included in the library.agn
file.

math.ldexp (m, e)

Retuns m2° (e should be an integer).

math.log (x, b)

Returns the logarithm of the number or complex number x to the base b, with b a
number or a complex number. The function is implemented in the Agena
language and included in the library.agn file.

math.log10 (x)

Returns the base-10 logarithm of the numibber or complex number x. The function is
implemented in the Agena language and included in the library.agn file.

math.max (x, ---)

Retfurns the maximum value among its arguments.

math.min (x, ---)

Retfurns the minimum value among its arguments.

math.modf (x)

Returns two numbers, the infegral part of x and the fractional part of x.

math.Phi
The golden number, Phi = (1+sqart(5))/2.

agena >> 149

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand
provided by ANSI C. (No guarantees can be given for its statistical properties.)

When called without arguments, returns a pseudo-random real number in the
range [0,1). When called with a number m math.random refuns a
pseudo-random integer in the range [1, m]. When called with two numbers m and
n, math.random returns a pseudo-random infeger in the range [m, n].

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal
sequences of numbers.

math.root (x, n)
Returns the non-principal n-th root of the numibber or complex value x. N must be an
integer.

math.roundf (x [, d])

Rounds the number x to the d-th digit. Return is a number. If d is omitted, the
number is rounded fo the nearest integer. The following Agena code explains the
algorithm used:

roundf := proc(x, digs) is
local d;
if digs = null then d := 0 else d ;= digs fi;
return int((10~d)*x + sign(x)*0.5) * (10/(-d))
end;

math.sec(x)

Returns the secant 1/cos(x) as a number. The function is implemented in the Agena
language and included in the library.agn file. The function works on both numibers
and complex values.

math.sinh (x)

Returns the hyperbolic sine of x. The function works on both numbers and complex
values.

math.sum (f, a, b)

Returns the sum of f(a) + fla+1) + ... + f(b), where fis a function, as a number.

math.tanh (x)

Returns the hyperbolic tangent of x. The function works on both numbers and
complex values.

150 7 Standard Libraries

math.toDecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes m and seconds s info
its decimal representation. The optional arguments m and s default to 0. The
function is implemented in the Agena language and included in the library.agn
file.

math.toRadians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments m and s default to O.

agena >> 151

7.9 Input and Output Facilities

The /O library provides two ways for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default
output file, and all input/output operations are over these default files. The second
style uses explicit file descriptors.

The table io provides three predefined file descriptors with their usual meanings
from C: io.stdin , io.stdout , And io.stderr

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.close ([file])

Closes file . Note that files are automatically closed when their handles are
garbage collected, but that takes an unpredictable amount of time to happen.
Without a file, closes the default output file.

io.flush (file)
io.flush ()

In the first form, saves any written data 1o file . In the second form, the function
flushes default output.

io.getkey ()

Reads a key from the keyboard and returns its ASCIl numiber. The function works on
UNIX and Windows based platforms only. The function is not available on other
platforms.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file
handle as the default input file. When called without parameters, it retumns the
current default input file.

In case of errors this function raises the error, instead of retuning an error code.

io.isfdesc (obj)

Checks whether obj is a valid file handle. Returns true if obj is an open file handle, or
false if obj is not a file handle.

152 7 Standard Libraries

io.lines ([filename])
io.lines ([file])

In the first form, the function opens the given file name in read mode and returns
an iterator function that, each time it is called, returns a new line from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f. When the iterator function detects
the end of file, it returns null (to finish the loop) and automatically closes the file if a
flename is given. In case of a file handle, the file is not closed.

The call io.lines() (without a file name) is equivalent to io.input(@lines(); that is, it
iterates over the lines of the default input file. In this case it does not close the file
when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new
file handle, or, in case of errors, null plus an error message.

The mode string can be any of the following:

* 't read mode (the default);

* 'W' write mode;

e 'a" append mode;

* 'r+" update mode, all previous data is preserved,;

* 'w+' update mode, all previous data is erased;

* 'a+" append update mode, previous data is preserved, writing is only
dllowed atf the end of file.

The mode string may also have a o' at the end, which is needed in some systems o
open the file in binary mode. This string is exactly what is used in the standard C
function fopen.

io.output ([file])
Similar to io.input but operates over the default output file.

agena >> 153

io.popen ([prog [, mode]])

Starts program prog in a separated process and returns a file handle that you can
use fo read data from this program (if mode is ', the default) or to write data to this
program (if mode is ‘w).

This function is system dependent and is not available on all platforms.

io.read(file)

io.read ()

In the first form, reads the file file , according to the given formats, which specify
what to read. For each format, the function returns a string (or a numiber) with the
characters read, or null if it cannot read data with the specified format., When
called without formats, it uses a default format that reads the entire next line (see
below).

The available formats are

e "*n" reads a number; this is the only format that returns a number instead of a
string.

* *a" reads the whole file, staring at the current position. On end of file, it
retuns the empty string.

* " reads the next line (skipping the end of line), returning null on end of file.
This is the default format.

* number: reads a string with up to this number of characters, returning null on
end of file. If number is zero, it reads nothing and returns an empty string, or
null on end of file.

In the second form, the function reads from the default input stream and returns a
string or number.

io.readlines (filename [, options])

Reads the entire file with name filename and refumns all lines in a table. If a string
consisting of one or more characters is given as a further argument, then all lines
beginning with this string are ignored. If the option true is passed, then on Windows
system, diacritics in the file are properly converted 10 the NT console character set.

Make sure that the lines in the file have no more than 2048 characters, otherwise
lines are not correctly spilit.

If the global system variable _EnvVerbose is set to a value other than null, an error
message is printed at the console if the file could not be found.

154 7 Standard Libraries

io.seek (file, [whence] [, offset])

Sefs and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

« ‘'set’ base is position O (beginning of the file);
» 'cur: base is current position;
* ‘'end' base is end of file;

In case of success, function seek returns the final file position, Mmeasured in bytes
from the beginning of the file. If this function fails, it retumns null, plus a string
describing the error.

The default value for whence is 'cur, and for offset is 0. Therefore, the call file@seek()
returns the current file position, without changing it; the call file@seek(set) sets the
position fo the beginning of the file (and returns 0); and the call file@seek(end) sets
the position to the end of the file, and returns its size.

io.setvbuf (file, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

* 'no": no buffering; the result of any output operation appears immediately.

o full's full buffering; output operation is performed only when the buffer is full
(or when you explicitly flush the file (see io.flush).

* lline": line buffering; output is buffered until a newline is output or there is any
input from some specidal files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is an
appropriate size.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the program ends.

io.write (---)
io.writeline (---)

Wirite the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument (a file handle). Except
for the file handle, all arguments must be strings or numbers. To write other values,
use toString or strings.format before write. writeline adds a new line character af the
end of the data written, whereas write does not.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the

agena >> 155

last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut 1o 'delim':<str> is delim ~ <str>

156 7 Standard Libraries

7.10 binio - Binary File Package

This package contains functions fo read data from and write data to binary files.

In this chapter, filehandle as the file ID (or file handle) always is a positive integer
greater than 2. This number is refurned by the binio.open function and must be
used in all package functions that require a file handle.

binio.close (filehandle [, filehandle2, ...])

Closes the files identified by the given file handle(s) and returns true if successful,
and fail otherwise. fail will be retumned if at least one file could not be closed. The
function also deletes the file handles and the corresponding filenames from the
binio.openfiles table if the file could be properly closed.

See also: binio.open.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, fail is refumned.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, fail is returned.

binio.make (filename)

Creates a file with the given filename (a string) in read/write mode and returns a file
handle (a numiber) for subsequent read or write operations. Note that the file is left
open. In case of errors, fail is returned.

The function also enters the newly opened file into the binio.openfiles table.

binio.make will be deprecated in one of the coming Agena releases, use
binio.open instead.

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (@ number). If it
cannot find the file, it creates it and leaves it open for further binio operations. The
file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus if the file does not yet exist, the function returns fail.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.close.

agena >> 157

binio.readchar (filehandle)
binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filename from
the current file position and increments the file position thereafter so that the next
byte in the file can be read with a new call to the binio.read function.

In the second form, at first the file position is changed by position bytes (a positive
or negative number or zero) relative to the current file position. After that the byte atf
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, null is returned. In case of an error, the return is fail.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filename from the
current file position and retumns it. If there is an eror or nothing to read, fail is
returned.

binio.readstring (filehandle)

The function reads a string from the file denoted by filename from the current file
position and returns it. If there is an error or nothing to read, fail is returned.

binio.rewind (filehandle)

Sets the file position to the beginning of the file denoted by filehandle . The
function returns the new file position as a number in case of success, and fail
otherwise.

See also: binio.toend.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relative 1o the current position. positon ~ May be negative, zero, or positive.

The retumn is true if the file position could be changed successfully, or fail otherwise.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the file handle. The function
returns true if successful, and fail otherwise (e.g. if the file was not opened before or
an error during flushing occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
be appended to the file without overwriting data. The function returns the file
position as a number in case of success, and fail otherwise.

158 7 Standard Libraries

See also: binio.rewind.

binio.writechar (filehandle, number)

The function writes the given Agena number fo the file denoted by filehandle af its
current position. The function returns true in case of success and fail otherwise.

The number should be an integer with 0 <= number < 256, otherwise number % 256
will be stored to the file.

binio.writelong (filehandle, number)

The function writes the given Agena number to the file denoted by filehandle aft ifs
current position. The number should be an infeger with _EnvMinLong < number <
_EnvMaxLong, otherwise the operations is not defined.

The function returns true in case of success and fail otherwise.

binio.writenumber (filehandle, number)

The function writes the given Agena number fo the file denoted by filehandle af its
current position. The function returns true in case of success and fail otherwise. The
numiber is always stored in Big Endian notation. The binio.readnumber function
makes proper conversion fo Little Endian if Agena runs on a Little Endian machine.

binio.writestring (filehandle, string)

The function writes the given string to the file denoted by filehandle af its current
position.

The function returns true in case of success and fail otherwise. Internally, writestring
first writes the length of the sting as a C long int and then the string without a null
character to the file. This information is then read by the binio.readstring function fo
efficiently return the string.

See also: binio.readstring .

agena >> 159

7.11 Operating System Facilities
This library is implemented through table os.

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

key meaning

‘acline’ 'on', 'off', or 'unknown'

‘installed’ true if a battery is present, and false otherwise

life’ battery life in percent

‘status’ either 'low' (capacity < 33%), 'medium' (capacity > 32% and

<67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'‘charging', 'no battery', 'unknown'

‘charging true if battery is currently being charged, or false otherwise

flag’ the battery flag, a number

lifetime’ the remaining battery lifetime in seconds, a number (or
undefined if it could not be determined)

fulllifetime’ the battery lifetime in seconds when at full charge, a number

(or undefined if it could not be determined)

On OS/2 Warp 4 and higher, the functions returns the status of the battery as a table
with the following information:

key meaning

‘acline’ 'on’, 'off', 'unknown', or 'invalid'

life’ battery life in percent, or 'undefined' if not available
‘status’ either 'high’, 'low', ‘critical’, ‘charging’, 'unknown', or ‘'invalid
flags'’ OS/2 power flags

power - true if power management is switched on, or false if not.
management

On other operating systems, the function returns fail.

0s.beep ()

os.beep (freq, dur)
The first form applies to Windows, UNIX, and OS/2. It sounds the loudspeaker with a
short "beep” and returns null.

The second form applies to Windows and OS /2 only. It sounds the loudspeaker with
frequency freq (Q positive integer) for dur seconds (a positive float). Retuns null if a
sound could be created successfully, or fail if nonpositive arguments were passed.

160 7 Standard Libraries

os.computername ()

Returns the name of the computer in Windows and UNIX. The return is a string. On
ofher architectures, the function returns fail.

os.cd (str)

Changes into the directory given by string str on the file system. Returns frue on
success, and fail, the error message from the operating system, and the C error
code otherwise.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format .

If the time argument is present, this is the time fo be formatted (see the os.time
function for a description of this value). Otherwise, date formats the current time.

If format starts with ', then the date is formatted in Coordinated Universal Time. After
this optional character, if format is *t, then date returns a table with the following fields:
year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a
boolean).

If format is Not *t, then date returns the date as a string, formatted according to the
same rules as the C function strftime.

When called without arguments, date returns a reasonable date and fime
representation that depends on the host system and on the current locale (that is,
os.date() is equivalent to os.date('%c).

os.difftime (t2, t1)

Returns the number of seconds from time t1 fo fime t2. In POSIX, Windows, and
some other systems, this value is exactly t2-11.

os.endian ()

Determines the endianness of your system. Returns O for Little Endian, 1 for Big
Endian, and fail if the endianness could not be determined.

os.execute (Jcommand])

This function is equivalent 1o the C function system . It passes command 10 be
executed by an operating system shell. It retfuns a status code, which is
system-dependent. If command is albsent, then it returns nonzero if a shell is available
and zero otherwise.

agena >> 161

os.exit ([code])

Calls the C function exit , with an optional code, to terminate the host program. The
default value for code is the success code.

os.fexists (filename)

Checks whether the given file (filename is of type string) exists. It returns true or false.

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and UNIX machines.

If no argument is given, the return is in bytes. If unit is the string koytes', the return is in
kBytes; if unit is 'mbytes’, the retun is in Mbytes; if unit is 'gbytes', the retumn is in
GBytes. On other architectures, the function returns fail.

os.fstat (fn)

Returns information on the file, link (UNIX only), or directory given by the string fn in @
table of the form [filetype, size in bytes, [last modification date i n the
form yyyy, mm, dd, hh, mm, ss]] . filetype may be 'FILE' if fn is a regular file,
'LINK' if fn is a symbolic link, 'DIR' if fn is a directory, 'CHARSPECFILE' if fn is O
character special file (a device like a terminal), 'BLOCKSPECFILE' if fn is a block
special file (a device like a disk), or 'OTHER' otherwise.

os.getenv (varname)

Returns the value of the process environment variable varname , or null if the variable
is not defined.

0s.isDOS ()

Returns true if Agena is run in DOS, and false otherwise. It also returns false if run
from a Windows shell.

os.isLinux ()

Returns true if Agena is run in Linux, and false otherwise.

0s.isOS2 ()
Returns true if Agena is run in OS/2, and false otherwise.

os.isSolaris ()

Returns true if Agena is run in Solaris (including Nexenta), and false otherwise.

162 7 Standard Libraries

0S.iISUNIX ()

Returns true if Agena is run in a UNIX environment (i.e. Solaris, Linux, and Nexenta),
and false otherwise.

0s.isWin ()
Retumns true if Agena is run in Windows, and false otherwise.

os.login ()

(Windows, OS/2, and UNIX only.) Returns the login name of the curent user as a
string. The return is a string. On other architectures, the function returns fail.

os.Is (d [, options])

Lists the contents of a directory as a table. If d is void, the current working directory is
evaluated.

If no option is given, files, links, and directories are returned. If the optional argument
files' is given, only files are returned. If the optional argument 'dirs' is given,
only directories are retuned. If the optional argument 'links' is given, only links are
returned (UNIX only).

os.Iscore (d)

Returns a table with all the files, links and directories in the given path d. If d is void,
the current working directory is evaluated.

0s.md (str)

Creates a directory given by string str on the file system. Returns true on success,
and fail, the error message from the operating system, and the C eror code
otherwise. The function is available on OS/2, DOS, Windows, and UNIX.

os.memstate ([unit])

(Windows, UNIX, and OS/2 only.) Retumns a table with information on current memory
usage. With no arguments, the return is the respective numiber of bytes (integers). If
unit is the string 'kbytes', the return is in kBytes, if unit is 'mbytes', the return is in MBytes.

The resulfing table will contain the following values, an X' indicates which values are
returned on your system.

agena >> 163

Key Description Windows UNIX OS/2
‘freephysical free physical RAM X X
‘totalphysical installed physical RAM X X X
freevirtual’ free virtual memory X

'totalvirtual' total virtual memory X X
'resident’ occupied resident pages X

On other architectures, the function returns fail.

os.pwd ()

Returns the current working directory on the file system as a string or fail if the path
could not be determined.

os.rd (str)

Deletes a directory given by string str on the file system. Returns true on success,
and fail, the error message from the operating system, and the C eror code
otherwise.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. The function returns true on
success. If this function fails, it retuns fail, the eror message from the operatfing
system, and the C error code otherwise.

os.rm (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns true on success, and fail, the error message from the operating
system, and the C error code otherwise.

os.setlocale (locale [, category])

Sets the current locale of the program. locale is a string specifying a locale;
category is an optional string describing which category to change: ‘all', 'collate, 'ctype’,
'monetary’, 'numeric', Or 'time'; the default category is ‘all. The function returns the name
of the new locale, or null if the request cannot be honoured.

When called with null as the first argument, this function only returns the name of the
current locale for the given category.

os.system ()

Returns information on the platform on which Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT 4.0, '2000', etfc.) as a string, the Build Number (awBuildNumber) as a
number, the plafform ID (awPlatformid) as a number, the magjor version

164 7 Standard Libraries

(QwMajorVersion), the minor version (dwMinorVersion), and the product type
(WwProductType) in this order.

In UNIX, OS/2, and DQOS, it returns a table of strings with the name of the operating
system (e.g. 'SunQS'), the release, the version, and the machine, in this order.

If the function could not determine the platform propertly, it returns fail.

os.time ([table])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table. This table must have fields year , month,
and day, and may have fields hour, min, sec, and isdst (for a description of these
fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this numiber counts the number of seconds
since some given start fime (the "epoch'). In other systems, the meaning is not
specified, and the number returned by time can be used only as an argument to
date and difftime.

os.tmpname ()

Retuns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.

os.wait (X)

Waits for x seconds and returns null. x may be an intfeger or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on OS/2, UNIX and Windows based systems only. On other architectures,
the function retumns fail.

agena >> 165

7.12 The Debug Library

This library provides the functionality of the debug interface to Agena programs. You
should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
femptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g.. that variables local to a function cannot be accessed from oufside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code.

All functions in this liorary are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commands for debug.debug are not lexically nested within any function,
and so have no direct access to local variables.

debug.doubleendiantest (n)

converts a number n (i.e. a C double) twice and retumns the converted number, the
orginal number, and the difference between the original and the converted values,
in this order.

The functions checks the intermnal function DoubleToBigEndian in the C source file
chelpers.c used by the binio package on Little Endian platforms to write and read
Agena numbers to/from file. If you should encounter trouble with Agena compiled
with GCC on Little Endian hardware, then you might try the -DGCC_WROUNDOFF_BUG
compilation option. The switch assumes, that on your platform, doubles consist of
eight bytes.

debug.getfenv (0)
Returns the environment of object o.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethook function).

166 7 Standard Libraries

debug.getinfo (Jthread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running at level function of the call stack of the given thread: level O is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on. If
function iS @ number larger than the number of active functions, then getinfo returmns
null.

The returned table may contain all the fields retfurned by lua_getinfo, with the string
what describing which fields to fill in. The default for what is to get all information
available, except the table of valid lines. If present, the option 'f adds a field
named func with the function itself. If present, the option L' adds a field named
activelines with the table of valid lines.

For instance, the expression debug.getinfo(1,n).name returns a name of the current
function, if a reasonable name can be found, and debug.getinfo(print) returns a table
with all available information about the print function.

debug.getlocal ([thread,] level, local)

This function retumns the name and the value of the local variable with index local
of the function at level level of the stack . (The first parameter or
local variable has index 1, and so on, until the last active local variable.) The
function returns null if there is no local variable with the given index, and raises an
ernor when called with a level out of range. (You can call debug.getinfo to check
whether the level is valid.)

Variable names starting with '(" (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

debug.getmetatable (object)
Returns the metatable of the given object or null if it does not have a metatable.

debug.getregistry ()
Returns the registry table.

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the
function func. The function returns null if there is no upvalue with the given index.

debug.setfenv (object, table)
Sets the environment of the given object to the given table . Returns object.

agena >> 167

debug.sethook ([thread,] hook, mask [, count])

Setfs the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

» ¢ The hook is called every time Agena calls a function;
* r: The hook is called every time Agena returns from a function;
* 'n The hook is called every time Agena enters a new line of code.

With a count different from zero, the hook is called after every count instructions.
When called without arguments, debug.sethook tumns off the hook.

When the hook is called, its first parameter is a string describing the event that has
friggered its call: ‘call, retum' (Or 'tail retum’), 'ine’, and 'count'. For line events, the hook
also gefts the new line number as its second parameter. Inside a hook, you can call
getinfo with level 2 to get more information about the running function (level O is the
getinfo function, and level 1 is the hook function), unless the event is *ail retum'. In this
case, Agena is only simulating the return, and a call to getinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function af level level of the stack. The function returns null if there is no local variable
with the given index, and raises an error when called with a level out of range. (You
can call getinfo 1o check whether the level is valid.) Otherwise, it returns the name of
the local variable.

debug.setmetatable (object, table)

Sets the metatable for the given object to the given table (which can be null).

debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the function
func. The function returns null if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

debug.system (n)

Retuns a table with the following system information: The size of various C types
(char, int, long, float, double), the endianness of your platform, the hardware and
the operating system for which the Agena executable has been compiled.

168 7 Standard Libraries

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the fraceback. This function is typically used with
xpcall to produce better error messages.

agena >> 169

7.13 utils - Utilities
The utils package provides miscellaneous functions.

utils.arraysize (strarr)

Returns the maximum number of elements allocable to the stringarray” userdata
denoted by strarr.

See also: utils.newarray .

utils.getarray (strarr, n)

Returns the (n+1)-th string from the “stringarray” userdata denoted by strarr. Note
that n starts from O.

See also: utils.newarray .

utils.getwholearray (strarr)

Retuns a table including all stings that are stored in the stringarray”™ userdata
denoted by strarr, with the first string atf table index 1 (and not 0).

See also: utils.newarray .

utils.newarray (n)

Creates a “stringarray” userdata of exactly n stings, n > 0. The userdata stores (C
pointers to) strings of any size, including empty strings. The strings can be set into the
userdata by the utfils.setarray function and accessed through the utils.getarray
function.

utils.setarray (strarr, n, str)

Sets the string str into the “stringarray” userdata denoted by strarr at position n. Note
that n starts from O, so your first string must e stored to index 0 of the userdata.

See also: utils.newarray .

utils.singlesubs (str, strarr)

Substitutes individual characters in str by corresponding replacements in the
“stringarray” userdata denoted by strarr. The retumn is a new string. Note that the
function tries fo find a replacement for a single character in str by determining its
infeger ASCIl value n and then accessing index n in the userdata. If an entry is
found for index n, then the character is replaced, otherwise the character remains
unchanged.

See also: utils.newarray .

170 7 Standard Libraries

Other functions in the utils library are:

utils.calendar (x)

Converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)

'month' (integer)

'day' (integer)

'hour' (integer)

'min' (integer)

'sec' (infeger)

‘wday' (integer, day of the week)
'yday' (integer, day of the year)

'DST' (Boolean, is Daylight Saving Time)

If X is null or not specified, then the current system time is returned.

agena >> 171

7.14 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the readlib or with functions.

stats.median (t)

Returns the median of all numeric values in table t as a number.

stats.mean (t)

Returns the mean of all numeric values in table t as a number. The function is
implemented in Agena and included in the library.agn file.

stats.minmax (t [, 'sorted")

Returns a table with the minimum of all numeric values in table t as the first value,
and the maximum as the second value. If the option 'sorted' is passed than the
function assumes that all values in t are sorted in ascending order so that execution
is much faster.

stats.gmean (1)

Returns the quadratic mean of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.sd (t)

Returns the standard deviation of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.toVals (t)

Converts all string values in table t to Agena numbers. The function is implemented
in Agena and included in the library.agn file.

stats.var (t)

Returns the variance of all numeric values in t as a number. The function is
implemented in Agena and included in the library.agn file.

172 7 Standard Libraries

7.15 calc - Calculus Package

This package contains mathematical routines to perform basic calculus. As a plus
package, it is not part of the standard distribution and must be activated with the
readlib or with functions.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f at a point x. If eps is
not passed, the function uses an accuracy of the value stored to _EnvEps . You may
pass another numeric value for eps if necessary.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.fseq (f, a [, b])

Creates a sequence seq(1~f(a), 2~f(a+1), ..., (b-a+1)~f (b)), with f a function, a
and b numibers. Thus, the function f is applied to all numbers between and
including a and b. The step size is 1.

calc.fsum (f, a, b)

Computes the sum of f (a), ..., f (b), with f a function, a and b numbers. If a > b, then
the result is O.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accurarcy of eps = _EnvEps has been reached. You may pass another numeric
value for eps if necessary.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.interp (tp)

Computes a Newton interpolating polynomial as a function. The interpolation points
are passed in a table tp, with each point being represented as a pair x.:y «.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.zero (f, a, b, [step [, eps]])

Returns all roofs of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] info smaller intervals [a, a+step |, [a+step ,
a+2*step |, ..., [a+p*step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roofs
using a modified regula falsi method.

agena >> 173

The accuracy of the regula falsi method is determined by eps, with eps =_EnvEps as
a default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn file.

174 7 Standard Libraries

/.16 linalg - Linear Algebra P ackage

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distrioution and must be activated with the readlib or with
functions.

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been constructed with the above
mentioned constructors.

The package includes a metatable linalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subfraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the abs operator and to apply unary minus 1o a vector.

The tfable linalg.mmt defines metamethods for matrix addition, subtraction and
mulfiplication with a scalar. It is assigned via the lib/linalg.agn file, as well.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

abs (A)

Determines the length of vector A. This operation is done by applying the _ abs
metamethod 1o A.

linalg.add (A, B)
Determines the vector sum of vector A and vector B. The return is a vector.

See also: linalg.sub.

linalg.backsubs (A, b)

Solves the set of linear equations A*x = b, where A is a matrix, and b the right-hand
side vector. The return is the solution vector x.

linalg.coldim (A [, ...])
Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
matrix is skipped.

agena >> 175

linalg.checkmatrix (A [, B, ...] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
frue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvector, the dimensions will not be checked if you pass
more than one maitrix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It returns nothing. See linalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, ...])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.
See linalg.isvector for information on how the check is being done.

linalg.coldim (A [, ...])
Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is right(A.dim)

See also: linalg.rowdim.

linalg.column (A)

Returns the n-th column of the matrix or row vector A as a new vector.

linalg.crossprod (A)
Computes the cross-product of two vectors of dimension 3. The return is a vector.

linalg.det (A)
Computes the determinant of the square matrix A. The return is a number.

linalg.diagonal (v)

Creates a square matrix A with all vector components put on the main diagonal.
The first element in v is assigned A[1][1], the second element in v is assigned A[2][2].
etc. Thus the result is a dim(v) x dim(v)-matrix.

176 7 Standard Libraries

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a
pair with the left-nand side representing the number of rows and the right-hand side
representing the number of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v1, v2)

Computes the vector dot product of two vectors v1, v2 of same dimension. The
vectors must consist of Agena numibers. The return is a number.

linalg.hilbert (n [, X])

Creates a generdlized n x n Hiloert matrix H, with H[i][j] := 1/(i+j-x). If x is not
specified, then xis 1.

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1 and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisymmetric matrix. If so, it returns true and false
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns true and false
ofherwise.

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns true and false
otherwise.

linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns tfrue and false
otherwise.

linalg.isvector (A)

Returns true if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’,

agena >> 177

linalg.ismatrix (A)

Returns true if A is a matrix, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Returns true if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.LUdecomp (A, n)

Computes the LU decomposition of the square matrix A of dimension n. The return is
the resulting matrix, the permutation vector as a sequence, and a number where
this number is either 1 for an even numiber of row interchanges done during the
computation, or -1 if the number of row inferchanges was odd.

linalg.matrix (01, 02, ..., on)

Creates a matrix from the given structures o[k]. The structures are considered to be
row vectors. Valid structures are vectors created with linalg.vector, tables, or
seqguences.

The return is a table with the user-defined type 'matrix'’ and a metatable linalg.mmt
assigned to the matrix.

linalg.mmap (f, A [, ...])

This function maps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmap for further
information.

linalg.mmul (A, B)
Conducts a multiplication of a m x n- and a n x p-matrix and returns a m x p matrix.

linalg.rowdim (A [, ...])
Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is left(A.dim)

See also: linalg.coldim.

178 7 Standard Libraries

linalg.scalarmul (A, n)

Performs a scalar multiplication by multiplying each element in vector A with the
number n. The result is a new vector.

linalg.sub (A, B)
Subtracts vector B from vector A. The result is a vector,

See also: linalg.add.

linalg.transpose (A)

Computes the franspose of a m x n-matrix A and thus returns an n x m-mairix.

linalg.vector (a1, a2, ...)
linalg.vector ([al, a2, ...])
linalg.vector (seq(al, a2, ...))
linalg.vector (n, [al, a2, ...])
linalg.vector (n, [])

Creates a vector with numeric components al, a2, etc. The function also accepts
a table or sequence of elements al, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and a, might be single
values or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

The result is a table with the user-defined type ‘vector and a metatable assigned to
allow basic vector operations with the operators +, -, *, unary minus and abs. The
table key 'dim' contains the dimension of the vector created.

linalg.vmap (f, v [, ...])

This operator maps a function f to all the components in vector v and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after the name of the vector.

agena >> 179

Examples:

> vmap(<< x -> x"2 >>, vector(l, 2, 3)):
[1,4,9]

> vmap(<< (x, y) -> x >y >>, vector(1, 0, 1), 0): #0 fory
[true, false, true]

See also: linalg.vzip.

linalg.vzip (f, v1, v2)

This function zips together two vectors by applying the function f to each of its
respective components. The result is a new vector v' where each element vik] is
determined by s[k] := f(vi[k], v2[K]).

vl and v2 must have the same dimension.
See also: linalg.vmap .
linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, enter: linalg.vector(n, [])

180 7 Standard Libraries

7.17 clock - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds. As a plus package, it is not part of the
standard distribution and must be activated with the readlib or with functions.

A fime value is always defined using the clock.time constructor. You may apply the
ordinary +, -, and * operators in order to add, subtract or multiply values.

All functions are implemented in Agena and included in the lib/clock.agn file.

clock.add (s1,s2 [, ...])

The function adds two or more values of type time. The return is a value of type
fime.

clock.adjust (s)

The function adjusts the representation of time values in a time object s by applying
the rules described in the description of clock.time.

clock.mul (x1, x2)

multiplies the numeric value x1 with the time value x2 (of type time). mul converts x2
to seconds, and then multiplies x2 with x1. The arguments may be in reverse order.

The return is a value of type time.

clock.sub (s1,s2 [, ...])

The function subtracts two or more values of type time. The retumn is a value of type
fime.

clock.time (min)
clock.time (min, sec)
clock.time (hrs, min, sec)

This function is used to define time values, where hrs , min, sec are numbers.

In the first form, minutes are defined. The return is a value of type time of the form
time(0, min, 0).

In the second form, both minutes and seconds are defined. The return is a value of
type time of the form time(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type time of the form time(hrs, min, sec). (hrs may be set to 0.)

agena >> 181

By default, if min > 59 and / or if sec > §9, proper adjustments are made before
the time value is refurned. If min > 59 the call to time returns time(hrs + 1, min - 60,
sec). If sec > 59 the call to time returns time(hrs, min + 1, sec - 60). The default is
set by the global variable clockAdjust which is assigned frue at initialisation of the
package if it has not already been set false before the clock package has been
loaded.

If _clockAdjust is set false then no adjustments are made to the arguments. You
can use clock.adjust to apply the adjustments described above.

182 7 Standard Libraries

agena >> 183

Chapter Eight

Agena Database System

184 8 Agena Database System

agena >> 185

8 Agena Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the readlib or with functions.

Agena is a database for storing and accessing strings and currently supports three
‘base” types:

1. Sorted "databases” with a key and one or more values,
2. sorted "lists™ which store keys only,
3. unsorted "sequences’ to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
fo the last record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However, all values can be read info the Agena environment very fast and stored
to a set (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast /O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type long infeger, so keys and values can e of almost unlimited size)
and they are not extended to a fixed standard length. To fasten /O operations, the
length of each key (and value) is also stored within the base file.

'Section Description

gheoder various informatfion on the data file, including the maximum
: number of possible records, the actual number of records, and
the type of the base (database, list, or sequence).

gindex only with databases and lists: area containing all file positions of
: the actual records. The index section is always sorted. Sequences
do not contain an index section.

records key-value pairs with databases, and keys with lists or sequences.

Note that by setting the global system variable EnwWerbose to null, some
non-critical warning messages are suppressed.

A sample session:
First activate the package:

> with 'ads’;

186 8 Agena Database System

Creafte a new database (file ctestagb) including all administration data like
number of records, etc.:

> createbase('c:/test.agb’);

Open the database for processing. The variable fth is the file handle which
references 1o the database file (c:test.agh) and is used in all ads functions.

> fh := openbase('c:/test.agb’);
Put an entry info the database with key "Duck”™ and value "Donald .

> writebase(fh, 'Duck’, 'Donald");

Check what is stored for "Duck .

> readbase(fh, 'Duck’):
Donald

Show information on the database:

> attrib(fh):

keylength ~ 31 # Maximum length fo r key

type ~0 # database type, 0 for relational database

stamp ~ AGENA DATA SYSTEM # name of database

indexstart ~ 256 # begin of index se ction in file

commentpos ~ 0 # position of a des cription, O because none
was given.

version ~ 300 # base version, her e 3.00

maxsize ~ 20000 # maximum number of possible records. Agena

automatically ext

ends the database, if

this number is ex ceeded.
indexend ~ 80255 # end of index sect ion
creation ~ 2008/01/18-19:00:50 # number of creatio n
columns ~ 2 # number of columns
size ~1 # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the open
function if you want to have access again.

> closebase(fh);
On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the "base” file. The table includes the following
keys:

Key Description Type
'‘columns' The number of columns in the base. number

'‘commentpos’ |The position of a comment in the base. If no number
comment is present, its value is 0.

agena >> 187

Key Description Type
'creation' The date of creation of the base. The return is a|string
formatted string including date and fime.
indexstart’ the first byte in the base file of the index section. number
indexend' the last byte in the base file of the index section. number
'keysize' the maximum length of the record key. number
'maxsize’ fotal number of data sets allowed. number
'size' the actual number of valid data sefs (see ads.size as|number
a shortcut).
'stamp’ The base stamp at the beginning of the file. string
Ttype' Indicator for database (0), list (1), or sequence (2). number
'version' The base version. number

If the file is not open, attrib returns false.

See also: ads.free, ads.size.

ads.clean (filehandle)

Physically deletes all enfries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrinked to the new reduced size.

If there are no invalid records, false is returned. If all records could be deleted
successfully, true is returned. If the file is not open, the result is fail. If a file truncation
error occurred, clean quits with an error. The function issues an error if the file
contfains a sequence.

ads.closebase (filehandle [, filehandle2, ...])

Closes the base(s) identified by the given file handle(s) and returns true if successful,
and false otherwise. false will be returned if at least one base could not e closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)
ads.comment (filehandle, comment)

ads.comment (filehandle, ")

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or null if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, retuns frue. The comment is always written o the

188 8 Agena Database System

end of the file. If it could not successfully add or update a comment, the function
qQuiits with an error.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle points to a sequence, an error is issued, and Nno comment is written.
fail is returneq, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
[commentpos!].

ads.createbase (filename
[, number_of _records [, type [, number_of colum ns

[, length_of key [, description]]]]])

Creates and initialises the index section of the new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

Arguments / Options:

flename The path and full name of the base file.

number of records |The maximum number of records in the base. Default is
20000. If you pass O, fail is returned and the base is not
created.

type By default, the type is 'database’. If you pass the string 'list',
then a list is created. The string 'seq’ creates a sequence. If
the type passed is not known, fail is returned and no base
is created.

number_of columns [The number of columns in a database. Default: 2 (key
and value). If the base is not a database, this option is
ignored. If the number of columns is nonpositive, fail is
returned and no base is created.

length_of key The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \O
character.

description A string with a description of the contents of the base. A
maximum of 75 characters are allowed (including the \0
character). If the string is too long, it is fruncated. Default:
75 spaces.

ads.createseq (filename)

Creates a sequence with the given filename (a string). The function is written in the
Agena language and can be used after running readlib 'ads'.

agena >> 189

ads.desc (filehandle)
ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, ads.desc sets or overwrites the description section of a
dafabase or list. Pass the description as a string. If the string is longer than 75
characters, fail is returned and there are no changes to the base file. If the file is
not open, fail is returned, as well. If it was successful, the return is true.

ads.expand (filehandle [, n])

Increases the maximum numiber of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function returns fail if the file is not open, and frue otherwise. It issues an error if
the file contains a sequence.

ads.free (filehandle)

Defermines the numlber of free data sets and retuns them as an infeger. |If
the base has not open, it returns fail. See also: ads.attrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
fail is returned.

See also: ads.getkeys, ads.getvalues.

ads.getkeys (filehandle)

Gefts all valid keys in a database or list and returns them in a table. Argument: file
handle (infeger). If the file is not open, fail is retfumned. If the base is empty, null is
returned. The function issues an error if the file contains a sequence.

See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

By default gefs all valid entries in the second column in a database and returns
them in a table. If the opfional argument column is given, the entries in this column
are returned. Argument: file handle (infeger). If the file is not open or if the column
does not exist, fail is returned. If the base is empty, null is returned. With lists, the
return is always null.

190 8 Agena Database System

See also: ads.geft, ads.getkeys.

ads.index (filehandle, key)

Searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns null.
If the file is not open, fail is returned.

ads.indices (filehandle)

Returns the file positions of all valid detests as a table.

If the file is not open, indices returns fail. If there are no entries in the base, the retun
is an empty table, otherwise a table with the indices is returned. The function issues
an error if the file contains a sequence.

See also ads.retrieve, ads.invalids, ads.peek, ads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns fail. If no invalid entries are found, the retum is
an empty table. See also ads.retrieve. Note that the function also works with lists.

However, since lists never contain invalid records, an empty table will always be
returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle)

lterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are refurned. With lists,
only the next key is returned.

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns null. If the database is empty, null is returned as well. If the
file is not open, the function returns fail.

Example:

> s, t ;= ads.iterate(th, ");

> s, t ;.= ads.iterate(th, s);

agena >> 191

ads.openbase (filename [, anything])

Opens the base with name filename and returns a file handle (@ number). If it
cannot find the file, or the base has not the correct version number, the function
retuns fail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(infegers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peek (filehandle, position)

Returns both the length of an entry (including the terminating \O character) and the
entfry itself af the given file position as two values (an integer and a string). The
function is save, so if you fry to access an invalid file position, the function will exit
returning fail. It issues an error if the file contains a sequence.

See also ads.index, ads.retrieve.

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns null. If the base is empty, null is
returned.

If the file is not open or the column does not exist, the function returns fail.

See also ads.read, ads.getvalues.

ads.readbase (filehandle, key)

With databases, the function retumns the entry (a string) to the given key (also a
string). With lists and sequences, the function retumns true if it finds the key, and false
ofherwise.

192 8 Agena Database System

If the file is not open, read returns fail. If the base is empty, null is returned. The
function uses binary search.

See also ads.rawsearch.

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.

The function returns true if it could delete the data set, and false if the set to be
deleted was not found. If the file is not open, delete returns fail. The function issues
an error if the file contains a sequence.

If you want to physically delete all invalid records, use ads.clean.

ads.retrieve (filehandle, position)

Gets a key and ifs value from a database or list (indicated by ifs first argument, the
fle handle) at the given file position (an integer, the second argument). Two values
are returned: the respective key and its value. With lists, only the key is returned.

The function is save, so if you try 10 access an invalid file position, the function will
exit and return fail.

If the file is not open, retrieve returns fail. The function issues an error if the file
contains a sequence.

See also ads.indices, ads.invalids.

ads.sizeof (filehandle)

Returns the number of valid records (an integer) in the base pointed to be
flehandle. If the base pointed to by the numeric filehandle is not open, the
function returns fail.

ads.sync (filehandle)

Flushes all unwritten content to the base file. The function retumns true if successful,
and fail otherwise (e.Q. if the file was not opened before or an error during flushing
occurred).

agena >> 193

ads.writebase (filehandle, key [, valuel, value2, . M)

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is wriffen as the value.

With lists, the function writes only the key (a string) fo the datfabase file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and true
is returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum number of possible records is exceeded, the base is automatically
expanded by 10 records. You do not need to do this manually.

write returns the true if successful. If the file is not open, write retumns fail.

194 8 Agena Database System

agena >> 195

Chapter Nine
C API Functions

196 Q@ C API Functions

agena >> 197

9 C API Functions

As already noted in Chapter 1, Agena features amost the same C APl as Lua 5.1 so
you are able 1o easily integrate your C packages and functions written for Lua 5.1 in
Agena.

The following C APl functions have been changed to remove automatic
string-to-numibber conversion:

API function Lua source file
lua_isnumloer lapi.c
lua_isstring lapi.c

lual _checknumber lauxlib.c

lual checkinteger lauxlib.c

Table 14: Modified Lua C API functions

Except for the above mentioned functions, no other modifications have been
made to C API functions that are part of Lua 5.1.

For a description of the API functions taken from Luag, see its Lua 5.1 manual.
Agena features a macro agn_Complex which is a shortcut for complex double.

The following API functions have been added (see files lapi.c and lua.h):

agn_ccall

agn_Complex agn_ccall (lua_State *L, int nargs, int nresults);
Exactly like lua_call, but returns a complex value as ifs result, so a subsequent
conversion to a complex number via stack operation is avoided. If the result of the

function call is not a complex value, 0 is returned. agn_ccall pops the function and
its arguments from the stack.

agn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value at index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

198 Q@ C API Functions

agn_checklstring

const char *agn_checklstring (lua_State *L, int idx , Size_t *len);

Works exactly like lual_checkistring but does not perform a conversion of numlbers
fo strings.

agn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);
Checks whether the value at index idx is a numibber and returns this numiber. An error
is raised if the value at idx is not a number. This procedure is an alternative 1o

luaL_checknumber for it is around 14 % faster in execution while providing the same
functionality by avoiding different calls o internal Auxiliary Library functions.

agn_checkstring

const char *agn_checkstring (lua_State *L, int idx) ;

Works exactly like lual_checkstring but does not perform a conversion of numbers
fo strings. An error is raised if idx is not a string.

agn_complexgetimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx onto the stack.

agn_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx onto the stack.

agn_copy

LUA_API void agn_copy (lua_State *L, int idx)

Returns a true copy of the structure at stack index idx. The copy is put on top of the
stack, but the original structure is not removed.

agena >> 199

agn_createcomplex
LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

Pushes a value of type complex onto the stack with its complex value given by c.

agn_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

Pushes a pair onto the stack with the left operand determined by the value at index
idxleft , and the right operand by the value at index idxright . The leftf and right
values are not popped from the stack.

agn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id X)

Creates an empty remember table for the function at stack index idx . It does not
change the stack.

agn_createseq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec preallocated places (nrec
may be zero).

agn_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space

pre-allocated for nrec items.

agn_deletertable

LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

200 Q@ C API Functions

agn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction);

Pops a key from the stack, and pushes four values in the following order: the key of
a table given by indextable, its corresponding value, the function at stack number
indexfunction, and the value from the table at the given indextable. If there are no
more elements in the table, then agn_fnext returns O (and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_call and the
iterator to work correctly.

A typical traversal looks like this:

/* table is in the stack at index 't', function is at stack index 'f */
lua_pushnil(L); /* first key */
while (lua_fnext(L, t, f) 1= 0) {

/*'key' is at index -4, 'value' at -3, function at -2, and 'value'
at-1*
lua_call(L, 1, 1); /* call the function with on e arg & one result */
lua_pop(L, 1); /* removes result of lua_cal l;
keeps 'key' for next iter ation */
}

While fraversing a table, do not call lua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tfolstring changes the value at the
given index; this confuses the next call to lua_next.

agn_geffuntiontype

LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function at stack index idx is a C function, O if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.

agn_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

Pushes the remember table if the function atf stack index idx onto the stack and

returns 1. If the function does not have a remember table, it pushes nothing and
returns O.

agn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns O if the remember table of the function at stack index idx cannot be
updated by the return statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an

agena >> 201

rable), 2 if the function at idx has no remember table atf all, and -1 if the value at
idx is not a function.

agn_getseqistring
const char *agn_getseqlstring (lua_State *L, int id X, int n, size_t *);

Gets the string at index n in the sequence at stack index idx . The length of the string
is stored fo I.

agn_getinumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value f[n] as a lua_ Number, where t is a table at the given valid index
idx. If f{n] is not a number, the return is 0. The access is raw; that is, it does not invoke
metamethods.

agn_gettstring

const char *agn_gettstring (lua_State *L, int idx, int n);
Returns the value t[n] as a const char, where tis a table at the given valid index idx.

If t{n] is not a string, the return is null. The access is raw; that is, it does not invoke
metamethods.

agn_getutype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, sequence, set, or pair at stack
position idx as a string and pushes it onto the top of the stack. If no user-defined

type has been defined, the function returns 0 and pushes nothing onto the stack.

See also: agn_setutype.

agn_isfail
int agn_isfail (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to fail, O
otherwise (tfrue and false).

202 Q@ C API Functions

agn_isfalse
int agn_isfalse (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to false, O
ofherwise (tfrue and fail).

agn_isutype

int *agn_isutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is the user-defined type denoted by
str . It returns 1 if the given user-defined type has been found, and O otherwise.

agn_isutype set

int *agn_isutypeset (lua_State *L, int idx, const ¢ har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a sequence, a
pair, set, or procedure, it returns O.

agn_issequtype

int *agn_issequtype (lua_State *L, int idx, const ¢ har *str);

Checks whether the type at stack index idx is a sequence and whether the
sequence has the user-defined type denoted by str . It retuns 1 if the above
condition is frue, and O otherwise.

agn_issetutype

int *agn_issetutype (lua_State *L, int idx, const ¢ har *str);

Checks whether the type at stack index idx is a set and whether this set has the
user-defined type denoted by str . It returns 1 if the above condition is true, and 0
otherwise.

agena >> 203

agn_istableutype

int *agn_istableutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a table and whether the table has the
user-defined type denoted by str . It returns 1 if the above condition is true, and O
otherwise.

agn_istrue

int agn_istrue (lua_State *L, int idx);

Retuns 1 if the Boolean value atf the given acceptable index results to true, O
otherwise (false and fail).

agn_isverbose
LUA_API int agn_isverbose (lua_State *L);

Checks whether the global system variable EnwWerbose is set to anything but null
or false. If _EnvVerbose is setf, the function returns 1, otherwise (_EnvVerbose is
unassigned or false) it refurns O.

agn_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_call, but refurns a numeric result as an Agena number, so a
subsequent conversion to a number via stack operations is avoided. If the result of
the function call is not numeric, O is returned. agn_ncall pops the function and its
arguments from the stack.

agn_nops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries atf f[idx]. If the
value at idx is not a table, set, or sequence, it returns 0. With tables, this procedure is
an altfemnative to lua_objlen if you want to get the size of a table since lua_objlen
does not return correct results if there are holes in the table or if the table is a
dictionary.

204 Q@ C API Functions

agn_optcomplex
agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);
If the value at index narg is a complex number, it retumns this number. If this

argument is absent or is null, the function returns complex z. Otherwise, raises an
eror.

agn_pairgeti
void agn_pairgeti (lua_State *L, int idx, int n);
Returns the left operand of a pair af stack index idx if nis 1, and the right operand if

n is 2, and puts it onto the top of the stack. You have 1o make sure that n is either 1
or 2.

agn_pairawget

void agn_pairrawget (lua_State *L, int index);

Pushes onto the stack the left or the right hand value of a pairt, where t is the value
at the given valid index index and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any

metamethods. This function pops both k from the stack. It does not invoke any
metamethods.

agn_pairawset

void agn_pairrawset (lua_State *L, int index);

Does the equivalent to plk] := v, where s is a pair af the given valid index index , V is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agn_poptop

void agn_poptop (lua_State *L);

Pops the top element from the stack. The function is more efficient than lua_popl(L,
1).

agena >> 205

agn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_seqsize

int agn_seqsize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the sequence at stack index idx .

agn_segstate

void agn_segstate (lua_State *L, int idx, size_t a[)
Returns the actual number of items and the maximum numiber of items assignable
to the sequence at index idx in a, a C array with two entries. The actual number of

items is stored to a[Q], the maximum numlber of entries to q[1]. If A[1] is O, then the
numiber of possible entries is infinite.

agn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

Setfs argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rset function for more information.
agn_setutype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

Sets a user-defined type of a procedure, sequence, set, or pair. The object is at
stack index idxobj , the type (a string) is af position idxtype . The function leaves the
stack unchanged.

If null is atf idxtype , the function deletes the user-defined type.

Setting the type of a sequence or pair also causes the pretty printer to display the

string passed to the function instead of the usual oufput at the console. This does
not apply to procedures.

206 Q@ C API Functions

See also: agn_getutype.

agn_setutypestring
void agn_setutypestring (lua_State *L, int idxobj, const char *str);

Sets the string str as the user-defined type of the procedure, sequence, set, or pair
at stack position idxobj

agn_size
int agn_size (lua_State *L, int idx);

Returns the numiber of items currently stored to the array and the hash part of the
table at stack index idx .

agn_ssize
int agn_ssize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the set at stack index idx .

agn_sstate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with two entries. The actual number
of items is stored to a[0], the current allocable size to q[1].

agn_tablestate

void agn_tablestate (lua_State *L, int idx, size t al])

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table atf index idx by storing the result in a,
a C array with four entries.

The number of key~value pairs currently stored in the array part is stored to q[0], the
number of pairs currently stored in the hash part to q[1]. The number of allocable
key~value pairs to the array part is stored to q[2], and the numiber of allocable
key~value pairs to the hash part is stored to q[3].

agena >> 207

agn_tocomplex

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_tonumber

lua_Number agn_tonumber (lua_State *L, int idx)
Assumes that the value af stack index idx is a number and retumns it as a

lua_Number. It does not check whether the value is a number. The strings or names
'undefined' and 'infinity' are recognised properly.

agn_tonumberx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx is a number or a string containing a number, it returns
it as a lua Number. The strings or names ‘'undefined' and infinity’ are
recognised properly. If successful, exception is assigned to 0.

If the value could not be converted to a number, O is returned, and exception is
assigned to 1.

lua_pushfail

void lua_pushfail (lua_State *L);

This macro pushes the boolean value fail onto the stack.

lua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the boolean value false onto the stack.

lua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefined onto the stack.

208 Q@ C API Functions

lua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the boolean value true onto the stack.

lua_rawset2

void lua_rawset2 (lua_State *L, int idx);
Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

Conftrary to lua_rawset, only the value is deleted from the stack, the key is kepft, thus
you save one call fo lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

lua_rawsetilstring

void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of t[n] = string, where 1 is the table af the given valid index idx,
n is an infeger, string the string to be inserted and len the length of then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] = k, where 1t is the value at the given valid index idx and
k is the value just below the top of the stack.

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

lua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

Does the equivalent of fin] = num, where 1 is the value at the given valid index idx,
nis an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agena >> 209

lua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

Does the equivalent of t[n] = str, where t is the value at the given valid index idx, n is
an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlint

void lua_rawsetstringlint (lua_State *L, int idx, ¢ onst char *str,
int len, int n);

Does the equivalent of t[str] = n, where 1 is the value at the given valid index idx, str
a string, len the length of str, and n an infeger.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstring number

void lua_rawsetstringnumber
(lua_State *L, int idx, const char *str, lua_Num ber n);

Does the equivalent of t[str] = n, where t is the value at the given valid index idx, str
a string, and n a Lua number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_sdelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the table at stack position
idx. The element at the stack top is popped thereafter.

lua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx and pushes it onto the
stack.

210 Q@ C API Functions

lua_seqggetinumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);
Returns the value 1[n] as a lua Number, where t is a sequence at the given valid

index idx. If t[n] is not a number, the retumn is HUGE_VAL The access is raw; that is, it
does not invoke metamethods.

lua_seqinsert
void lua_seqinsert (lua_State *L, int idx);
Inserts the element on top of the Lua stack into the sequence at stack index idx .

The element is inserted at the end of the sequence. The value added is popped
from the stack.

lua_segnext

int lua_seqgnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index. If there are no more elements in the sequence, then
lua_segnext returns O (and pushes nothing). To access the very first item in a
sequence, put null on the stack before (with lua_pushnil).

While traversing a sequence, do not call lua_folstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_seqgnext.

lua_seqgrawget

void lua_seqrawget (lua_State *L, int index);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

agena >> 211

lua_seqrawset
void lua_seqrawset (lua_State *L, int index);

Does the equivalent to s[k] := v, where s is a sequence atf the given valid index
index , Vv is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

lua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of s[n] = string , where s is the sequence at the given valid
index idx , n is an integer, string the string to be inserfed and len the length of then
string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqseti

void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to index n of the sequence at stack index idx .
If the value added is null, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted fo the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.

If you want to extend a current sequence, the function allows to add a new item

only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

lua_seqgsetinumber
void lua_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

Sets the given Agena number numto index n of the sequence at stack index idx .

212 Q@ C API Functions

lua_seqsetistring
void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

Sets the given string str to index n of the sequence at stack index idx .

lua_sinsert
void lua_sinsert (lua_State *L, int idx);

Inserts an item into a set. The set is at the given index idx, and the item is at the fop
of the stack.

This function pops the item from the stack.

lua_sinsertistring

void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size tl);

Sefts the first | characters of the string denoted by str info the set af the given index
idXx.

lua_sinsertnumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

Sets the number denoted by n info the set af the given index idx.

lua_sinsertstring
void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

Sefts the string denoted by str into the set at the given index idx.

lua_srawget

void lua_srawget (lua_State *L, int index);

Checks whether the set at index idx contains the item at the top of the stack. The
function pops the key from the stack putting the Boolean value true or false in its

place.

The function does not invoke any metamethods.

agena >> 213

lua_srawset

void lua_srawset (lua_State *L, int index);

Does the equivalent fo insert v into s . Where s is the set at the given valid index
index, v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.

lua_usnext
int lua_usnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given index. If there are no more elements in the set, then lua_usnext retuns O (and
pushes nothing). To access the very first item in a set, put null on the stack before
(with lua_pushnil).

While traversing a setf, do not call lua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_usnext.

luaL_getudata

void *luaL_checkudata (lua_State *L, int narg, cons t char *tname,
int *result);

Checks whether the function argument narg is a userdata of the type tname.
Contrary to lual_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and O otherwise.

214 Q@ C API Functions

agena >> 215

Appendix

216 Appendix

agena >>

217

Appendix

A1l Operators

Unary operators are:

abs, arctan , assigned , char , copy, cos, entier , even, exp, filled , finite , gammaln,

imag, int , isnull , join , left
sadd, sign , sin , size , sqrt

Binary operators are:

in , intersect , minus, shift

, In, lower , nargs , not, gsadd , real , replace , right ,

, tan , trim , type , unique , upper , typeof , - (UNnAry Minus).

, split , subset , union , xsubset , + (addifion), -

(subtraction), * (multiplicatfion), / (division), % (Mmodulus), ~ (exponentiation), **

(integer exponentiation), ..

(concatenation), = (equality), < (less than), <= (less or

equal), > (greater than) , >= (greater or equal), $ (substring), : (pair constructor), !
(complex constructor), \ (infeger division).

A2 Metamethods

The following metamethods were inherited from Lua 5.1:

Index to metatable Meaning

' index Procedure invoked when a value shall o be read from
a table, set, sequence, or pair.

' gc' Garbage collection (for userdata only).

' _mode' Sets weakness of a table.

' add' Addition of two values.

' sub' Subtraction of two values.

" mul Multiplication of two values.

e\ Division of two values.

' _mod' Modulus.

' pow Exponentiation.

ounm' Unary minus.

' e Equality operation.

L Less-than operation.

'le Less-than or equals operation.

' _concat' Concatenation.

' call See Lua 5.1 manual.

' tostring' Method for pretty printing values at stdout.

Table 15: Metamethods taken from Lua

The' len' metamethod in Lua 5.1 to determine the size of an object was replaced
with the ' size' metamethod.

218

Appendix

The following methods are new in Agena:

Index to metatable

Meaning

" abs'

abs operator

' arctan' arctan operator

' Cos' COs operator

' eeq strict equality operator (==

' entier entier operator

' even' even operator

'exp' exp operator

' finite' finite operator

' _gammaln' gammaln operator

'in' in binary operator (for tables and sequences only)

'int' int operator

' intdiv' integer division

' ipow! exponentiation with an integer power

"on' In operator

' _gsadd' gsadd operator for table or sequence based
user-defined types

' sadd' sadd operator for table or sequence based
user-defined types

' sign' sign operafor

' size' size operator

'osin' sin operator

'osqgrt! sqrt operator

' tan'’ tan operator

' writeindex’ Procedure invoked when a value shall fo be written o
a table, set, sequence, or pair.

Table 16: Metamethods introduced with Agena
A3 System Variables

Agena lefs you configure the following seftings:

System variable Meaning
EnvAgenaPath path to the main Agena directory

_EnvLongTable If set true, then each key~value pair in a table will
be printed at a separate line, otherwise a table will
be printed like sets or sequences.

_EnvMaxLong The maximum integral value of the C type long on
your platform; do not change this value.

_EnvMinLong The minimum integral value of the C type long on
your platform; do not change this value.

_EnvMore number of entries in tables and sets printed by print

and the end-colon functionality before issuing the
“press any key' prompt.

agena >> 219

System variable Meaning

_EnvPrintfNewlLineAfterinput | If set to frue, a newline is printed af the console after
enfering a statement. Default: unassigned, i.e. no
newline.

_EnvPrinfNoNewlLine If it is set true, the print function does not print a
newline when it quits, otherwise a newline is printed.
_EnvPrintZeroedCmpixVals | When set fo frue, real and imaginary parts of
complex values close to zero are rounded to zero
on output. (Note that internally, complex values are
not rounded.)

_EnvRelease A sequence containing the sting "AGENA", the
main interpreter version as a number, the subversion
as a number, and the patch level as a number, as

well.

_EnvWithProtected set of names (passed as strings) that cannot by
overwritten by the with function.

_EnvWithVerbose If set to false, the with function wil not display
warmings, the init sting, and the short names
assigned.

PROMPT Defines the prompt Agena displays at the console

_RELEASE Release information on the installed Agena release,

returned as a string, e.g. 'AGENA >> 0.90.0'.

Table 17: System variables
A4 Command Line Usage
Agena can be used in the command line as follows:
agena [options] [script [arguments]]

This means that any option, an Agena script, and the arguments are all optional. If
you just enter

shell> agena
Agena is started in inferactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering inferactive mode:

A4.1 Using the -e Option

We may write a script with a text editor, e.g. one to print the sine of a number. This
script may look like the following two lines:

220 Appendix

n:=nor Pi; #if nis not set from the shell, ju stassign Piton
writeline(sin(n));

This script prints the sine to a user-given numeric argument which is passed by using
the -e option and a string containing a valid Agena statement. It uses a variable n
which you must assign via the -e option:

shell> agena -e "n := Pi/2" sin.agn
1

Note that you first have to enter the -e option along with the Agena statement, and
then the name of the script.

A4.2 Using the internal args Table

Everything you pass to the interpreter from the command line is stored in the args
table.

The name of the script is always stored at index O, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. Any options are accessible
via negative keys. The name of the interpreter is always at the smallest index.

Consider the following script called 'args.agn':

fori, jin args do
writeline(i, j, delim~"\t")
od;

If it is run, the output is:

shell> agena args.agn 0

-1 agena
0 args.agn
1 0

Just play around with this a little bit.

Let us use our new knowledge: The script In.agn' requires a string and a number
and calculates the natural logarithm of this number. The number entered at the
command line is entered into the args table as a sfring, so you first must convert it
info a “real” number.

argl := args[1];
arg2 := toNumber(args[2]);

try argl as string;
try arg2 as number;

writeline(argl, In(arg2));

Use it:

agena >> 221

shell> agena In.agn "The natural logarithm of 1 is: "1
The natural logarithm of 1 is: 0

A4.3 Running a Script and then entering interacti ve Mode

The -i option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i option does not matter. The
following shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := '"AGENA> "
AGENA>

A4.4 Running Scripts in UNIX

If you use Agena in UNIX, then you can execute Agena scripts directly by just
entering the name of the script followed by any arguments (if needed).

Just insert the following line at the head (i.e. line 1) of each script:
#l/usr/local/bin/agena
and set the appropriate rights for the script file (e.g. chmod a+x scriptname).

An example:

bash> ./sin.agn 1
0.8414709848079

In all other operating systems, the first line is ignored by the interpreter, so you do not

have to delete the first line of the script in order to use scripts you have originally
written under UNIX.

A4.5 Command Line Switches

The available switches are:

Option Function

-b print compilation time of Agena binary with startup message
- "stat" | execute string "stat" (double quotes needed)
-h help information

-i enter interactive mode after executing “script” or other options

-| print licence information

-n do not run initialisation file "agena.ini’

-p path | sets path to main Agena folder <path>, overiding the standard
initialisation procedure for EnvAgenaPath. The path does not need to
e put in quotes.

-rname | readlib liorary <name>. The name of the library does not need to be
put in quotes.

-V show version information

222 Appendix

Option | Function
-- stop handling options
- execute stdin and stop handling options

A5 Define your own Printing Rules for Structures

You can tell Agena how to oufput tables, sets, sequences, pairs, and complex
values at the console.

With each call to the internal printing routine, the interpreter uses the respective
_EnvPrint function defined in the lib/library.agn fle. You may change these
functions according to your needs.

Table index Functionality
EnvPrint.Table defines how to print a table, overriding the built-in default
EnvPrint.Set defines how to print a set, overriding the built-in default
_EnvPrint.Sequence defines how to print a sequence, overiding the built-in
default
EnvPrint.Pair defines how to print a pair, overriding the built-in default
_EnvPrint. Complex defines how fo print a complex value, overriding the
built-in default

Alternative _EnvPrint functions might look like the following:

> EnvPrint.Set := proc(s) is
> write('set();

> f size s> 0 then

> foriinsdo

> write(i, ', 9;

> od;

> write(\b\b");

> fi;

> write()";

> end;

> EnvPrint.Complex := proc(s) is

> write(cmplx(, real(s), ', ', imag(s),)");
> end;

>{1, 2}
set(1, 2)

> 1%2%|:
cmplx(1, 2)

